
Package: ecr (via r-universe)
August 24, 2024

Title Evolutionary Computation in R

Description Framework for building evolutionary algorithms for both
single- and multi-objective continuous or discrete optimization
problems. A set of predefined evolutionary building blocks and
operators is included. Moreover, the user can easily set up
custom objective functions, operators, building blocks and
representations sticking to few conventions. The package allows
both a black-box approach for standard tasks (plug-and-play
style) and a much more flexible white-box approach where the
evolutionary cycle is written by hand.

Version 2.1.1

Encoding UTF-8

Date 2023-03-08

Maintainer Jakob Bossek <j.bossek@gmail.com>

License GPL-3

URL https://github.com/jakobbossek/ecr2

BugReports https://github.com/jakobbossek/ecr2/issues

Depends R (>= 2.10), BBmisc (>= 1.6), smoof (>= 1.4), ParamHelpers (>=
1.1)

Imports checkmate (>= 1.1), Rcpp (>= 0.12.16), parallelMap (>= 1.3),
reshape2 (>= 1.4.1), ggplot2 (>= 1.0.0), viridis, dplyr,
plot3D, plot3Drgl, scatterplot3d, plotly, knitr, kableExtra,
lazyeval

Suggests testthat (>= 0.9.1), rmarkdown, mlr, mlbench, randomForest,
covr

ByteCompile yes

LinkingTo Rcpp

VignetteBuilder knitr

LazyData true

RoxygenNote 7.2.3

1

https://github.com/jakobbossek/ecr2
https://github.com/jakobbossek/ecr2/issues

2 Contents

Repository https://jakobbossek.r-universe.dev

RemoteUrl https://github.com/jakobbossek/ecr2

RemoteRef HEAD

RemoteSha 2b87e1c6b036793d515912cb7b9dbe7f98ba2291

Contents
addUnionGroup . 4
approximateNadirPoint . 5
approximateRefPoints . 6
approximateRefSets . 6
asemoa . 7
categorize . 9
computeAverageHausdorffDistance . 10
computeCrowdingDistance . 11
computeDistanceFromPointToSetOfPoints . 11
computeDominanceRanking . 12
computeGenerationalDistance . 13
computeHV . 14
computeIndicators . 15
computeInvertedGenerationalDistance . 16
dominated . 17
dominates . 18
doNondominatedSorting . 18
ecr . 19
ecr_parallelization . 22
ecr_result . 22
emoaIndEps . 23
evaluateFitness . 26
explode . 27
filterDuplicated . 28
generateOffspring . 29
generatesMultipleChildren . 30
generators . 30
getFront . 31
getIndividuals . 32
getNumberOfChildren . 32
getNumberOfParentsNeededForMating . 33
getPopulationFitness . 33
getPopulations . 34
getSize . 34
getStatistics . 35
getSupportedRepresentations . 36
initECRControl . 36
initLogger . 37
initParetoArchive . 39
initPopulation . 40

Contents 3

is.supported . 41
isEcrOperator . 41
makeECRMonitor . 42
makeEMOAIndicator . 42
makeMutator . 43
makeOperator . 44
makeOptimizationTask . 44
makeRecombinator . 45
makeSelector . 46
makeTerminator . 47
mcMST . 47
mutBitflip . 48
mutGauss . 49
mutInsertion . 50
mutInversion . 50
mutJump . 51
mutPolynomial . 51
mutScramble . 52
mutSwap . 53
mutUniform . 53
niceCellFormater . 54
normalize . 55
nsga2 . 56
plotDistribution . 57
plotFront . 59
plotHeatmap . 60
plotScatter2d . 61
plotScatter3d . 63
plotStatistics . 64
recCrossover . 64
recIntermediate . 65
recOX . 65
recPMX . 66
recSBX . 66
recUnifCrossover . 67
reduceToSingleDataFrame . 68
registerECROperator . 68
replace . 69
selDomHV . 70
selDomNumberPlusHV . 71
select . 72
selGreedy . 73
selNondom . 73
selRanking . 74
selRoulette . 75
selSimple . 76
selTournament . 76
setDominates . 77

4 addUnionGroup

setup . 78
setupECRDefaultMonitor . 79
smsemoa . 79
sortByObjective . 81
stoppingConditions . 82
toGG . 82
toLatex . 83
toParetoDf . 84
transformFitness . 85
updateLogger . 86
updateParetoArchive . 86
which.dominated . 87
wrapChildren . 88

Index 89

addUnionGroup Grouping helpers

Description

Consider a data frame with results of multi-objective stochastic optimizers on a set of problems from
different categories/groups (say indicated by column “group”). Occasionally, it is useful to unite
the results of several groups into a meta-group. The function addUnionGroup aids in generation of
such a meta-group while function addAllGroup is a wrapper around the former which generates a
union of all groups.

Usage

addUnionGroup(df, col, group, values)

addAllGroup(df, col, group = "all")

Arguments

df [data.frame]
Data frame.

col [character(1)]
Column name of group-column.

group [character(1)]
Name for new group.

values [character(1)]
Subset of values within the value range of column col.

Value

[data.frame] Modified data frame.

approximateNadirPoint 5

Examples

df = data.frame(
group = c("A1", "A1", "A2", "A2", "B"),
perf = runif(5),
stringsAsFactors = FALSE)

df2 = addUnionGroup(df, col = "group", group = "A", values = c("A1", "A2"))
df3 = addAllGroup(df, col = "group", group = "ALL")

approximateNadirPoint Reference point approximations.

Description

Helper functions to compute nadir or ideal point from sets of points, e.g., multiple approximation
sets.

Usage

approximateNadirPoint(..., sets = NULL)

approximateIdealPoint(..., sets = NULL)

Arguments

... [matrix]
Arbirary number of matrizes.

sets [list]
List of matrizes. This is an alternative way of passing the sets. Can be used
exclusively or combined with

Value

[numeric] Reference point.

See Also

Other EMOA performance assessment tools: approximateRefPoints(), approximateRefSets(),
computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(), niceCellFormater(), normalize(),
plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

6 approximateRefSets

approximateRefPoints Helper function to estimate reference points.

Description

E.g., for calculation of dominated hypervolume.

Usage

approximateRefPoints(df, obj.cols = c("f1", "f2"), offset = 0, as.df = FALSE)

Arguments

df [data.frame]
Data frame with the required structure, i.e. the data frame must contain a prob-
lem column "prob" as well as objective column(s).

obj.cols [character(>= 2)]
Column names of the objective functions. Default is c("f1", "f2"), i.e., the
bi-objective case is assumed.

offset [numeric(1)]
Offset added to reference points. Default is 0.

as.df [logical(1)]
Should a data.frame be returned? Default is FALSE. In this case a named list is
returned.

Value

[list | data.frame]

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefSets(),
computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(), niceCellFormater(), normalize(),
plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

approximateRefSets Helper function to estimate reference set(s).

Description

The function takes an data frame with columns at least specified by obj.cols and “prob”. The
reference set for each unique problem in column “prob” is then obtained by combining all approxi-
mation sets generated by all considered algorithms for the corresponding problem and filtering the
non-dominated solutions.

asemoa 7

Usage

approximateRefSets(df, obj.cols, as.df = FALSE)

Arguments

df [data.frame]
Data frame with the required structure.

obj.cols [character(>= 2)]
Column names of the objective functions.

as.df [logical(1)]
Should a data.frame be returned? Default is FALSE. In this case a named list is
returned.

Value

[list | data.frame] Named list of matrizes (names are the problems) or data frame with columns
obj.cols and “prob”.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(), niceCellFormater(), normalize(),
plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

asemoa Implementation of the NSGA-II EMOA algorithm by Deb.

Description

The AS-EMOA, short for aspiration set evolutionary multi-objective algorithm aims to incorporate
expert knowledge into multi-objective optimization [1]. The algorithm expects an aspiration set,
i.e., a set of reference points. It then creates an approximation of the pareto front close to the
aspiration set utilizing the average Hausdorff distance.

Usage

asemoa(
fitness.fun,
n.objectives = NULL,
minimize = NULL,
n.dim = NULL,
lower = NULL,
upper = NULL,
mu = 10L,
aspiration.set = NULL,
normalize.fun = NULL,

8 asemoa

dist.fun = computeEuclideanDistance,
p = 1,
parent.selector = setup(selSimple),
mutator = setup(mutPolynomial, eta = 25, p = 0.2, lower = lower, upper = upper),
recombinator = setup(recSBX, eta = 15, p = 0.7, lower = lower, upper = upper),
terminators = list(stopOnIters(100L))

)

Arguments

fitness.fun [function]
The fitness function.

n.objectives [integer(1)]
Number of objectives of obj.fun. Optional if obj.fun is a benchmark function
from package smoof.

minimize [logical(n.objectives)]
Logical vector with ith entry TRUE if the ith objective of fitness.fun shall
be minimized. If a single logical is passed, it is assumed to be valid for each
objective.

n.dim [integer(1)]
Dimension of the decision space.

lower [numeric]
Vector of minimal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

upper [numeric]
Vector of maximal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

mu [integer(1)]
Population size. Default is 10.

aspiration.set [matrix]
The aspiration set. Each column contains one point of the set.

normalize.fun [function]
Function used to normalize fitness values of the individuals before computation
of the average Hausdorff distance. The function must have the formal arguments
“set” and “aspiration.set”. Default is NULL, i.e., no normalization at all.

dist.fun [function]
Distance function used internally by Hausdorff metric to compute distance be-
tween two points. Expects a single vector of coordinate-wise differences be-
tween points. Default is computeEuclideanDistance.

p [numeric(1)]
Parameter p for the average Hausdorff metric. Default is 1.

parent.selector

[ecr_selector]
Selection operator which implements a procedure to copy individuals from a
given population to the mating pool, i. e., allow them to become parents.

categorize 9

mutator [ecr_mutator]
Mutation operator of type ecr_mutator.

recombinator [ecr_recombinator]
Recombination operator of type ecr_recombinator.

terminators [list]
List of stopping conditions of type “ecr_terminator”. Default is to stop after 100
iterations.

Value

[ecr_multi_objective_result]

Note

This is a pure R implementation of the AS-EMOA algorithm. It hides the regular ecr interface and
offers a more R like interface while still being quite adaptable.

References

[1] Rudolph, G., Schuetze, S., Grimme, C., Trautmann, H: An Aspiration Set EMOA Based on
Averaged Hausdorff Distances. LION 2014: 153-156. [2] G. Rudolph, O. Schuetze, C. Grimme,
and H. Trautmann: A Multiobjective Evolutionary Algorithm Guided by Averaged Hausdorff Dis-
tance to Aspiration Sets, pp. 261-273 in A.-A. Tantar et al. (eds.): Proceedings of EVOLVE -
A bridge between Probability, Set Oriented Numerics and Evolutionary Computation V, Springer:
Berlin Heidelberg 2014.

categorize Assign group membership based on another group membership.

Description

Given a data frame and a grouping column of type factor or character this function generates a new
grouping column which groups the groups.

Usage

categorize(df, col, categories, cat.col, keep = TRUE, overwrite = FALSE)

Arguments

df [data.frame]
Data frame.

col [character(1)]
Column name of group variable.

categories [list]
Named list. Names indicate the name of the category while the values are char-
acter vectors of values within the range of the col column.

10 computeAverageHausdorffDistance

cat.col [character(1)]
Column name for categorization.

keep [logical(1)]
Keep the source column col? Default is TRUE.

overwrite [logical(1)]
If TRUE, cat.col is set to col.

Value

[data.frame] df = data.frame(group = c("A1", "A1", "A2", "A2", "B1", "B2"), perf = runif(6),
stringsAsFactors = FALSE) df2 = categorize(df, col = "group", categories = list(A = c("A1", "A2"),
B = c("B1", "B2")), cat.col = "group2")

computeAverageHausdorffDistance

Average Hausdorff Distance computation.

Description

Computes the average Hausdroff distance measure between two point sets.

Usage

computeAverageHausdorffDistance(
A,
B,
p = 1,
normalize = FALSE,
dist.fun = computeEuclideanDistance

)

Arguments

A [matrix]
First point set (each column corresponds to a point).

B [matrix]
Second point set (each column corresponds to a point).

p [numeric(1)]
Parameter p of the average Hausdoff metric. Default is 1.

normalize [logical(1)]
Should the front be normalized on basis of B? Default is FALSE.

dist.fun [matrix]
Distance function to compute distance between points x and y. Expects a single
numeric vector d with the coordinate-wise differences di = (xi - yi). Default is
computeEuclideanDist.

computeCrowdingDistance 11

Value

[numeric(1)] Average Hausdorff distance of sets A and B.

computeCrowdingDistance

Compute the crowding distance of a set of points.

Description

The crowding distance is a measure of spread of solutions in the approximation of the Pareto front.
It is used, e.g., in the NSGA-II algorithm as a second selection criterion.

Usage

computeCrowdingDistance(x)

Arguments

x [matrix]
Numeric matrix with each column representing a point.

Value

[numeric] Vector of crowding distance values.

References

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Computation In Evolutionary Computation, IEEE
Transactions on, Vol. 6, No. 2. (07 April 2002), pp. 182-197, doi:10.1109/4235.996017

computeDistanceFromPointToSetOfPoints

Computes distance between a single point and set of points.

Description

Helper to compute distance between a single point and a point set.

Usage

computeDistanceFromPointToSetOfPoints(
a,
B,
dist.fun = computeEuclideanDistance

)

12 computeDominanceRanking

Arguments

a [numeric(1)]
Point given as a numeric vector.

B [matrix]
Point set (each column corresponds to a point).

dist.fun [matrix]
Distance function to compute distance between points x and y. Expects a single
numeric vector d with the coordinate-wise differences di = (xi - yi). Default is
computeEuclideanDist.

Value

[numeric(1)]

computeDominanceRanking

Ranking of approximation sets.

Description

Ranking is performed by merging all approximation sets over all algorithms and runs per instance.
Next, each approximation set C is assigned a rank which is 1 plus the number of approximation
sets that are better than C. A set D is better than C, if for each point x ∈ C there exists a point
in y ∈ D which weakly dominates x. Thus, each approximation set is reduced to a number – its
rank. This rank distribution may act for first comparrison of multi-objecitve stochastic optimizers.
See [1] for more details. This function makes use of parallelMap to parallelize the computation
of dominance ranks.

Usage

computeDominanceRanking(df, obj.cols)

Arguments

df [data.frame]
Data frame with columns at least “prob”, “algorithm”, “repl” and column names
specified via parameter obj.cols.

obj.cols [character(>= 2)]
Column names in df which store the objective function values.

Value

[data.frame] Reduced df with columns “prob”, “algorithm”, “repl” and “rank”.

computeGenerationalDistance 13

Note

Since pairwise non-domination checks are performed over all algorithms and algorithm runs this
function may take some time if the number of problems, algorithms and/or replications is high.

References

[1] Knowles, J., Thiele, L., & Zitzler, E. (2006). A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Retrieved from https://sop.tik.ee.ethz.ch/KTZ2005a.pdf

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), emoaIndEps(), makeEMOAIndicator(), niceCellFormater(), normalize(),
plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

computeGenerationalDistance

Computes Generational Distance.

Description

Helper to compute the Generational Distance (GD) between two sets of points.

Usage

computeGenerationalDistance(
A,
B,
p = 1,
normalize = FALSE,
dist.fun = computeEuclideanDistance

)

Arguments

A [matrix]
First point set (each column corresponds to a point).

B [matrix]
Second point set (each column corresponds to a point).

p [numeric(1)]
Parameter p of the average Hausdoff metric. Default is 1.

normalize [logical(1)]
Should the front be normalized on basis of B? Default is FALSE.

dist.fun [matrix]
Distance function to compute distance between points x and y. Expects a single
numeric vector d with the coordinate-wise differences di = (xi - yi). Default is
computeEuclideanDist.

14 computeHV

Value

[numeric(1)]

computeHV Functions for the calculation of the dominated hypervolume (contri-
bution).

Description

The function computeHV computes the dominated hypervolume of a set of points given a reference
set whereby computeHVContr computes the hypervolume contribution of each point.

If no reference point is given the nadir point of the set x is determined and a positive offset with
default 1 is added. This is to ensure that the reference point dominates all of the points in the
reference set.

Usage

computeHV(x, ref.point = NULL, ...)

computeHVContr(x, ref.point = NULL, offset = 1)

Arguments

x [matrix]
Matrix of points (column-wise).

ref.point [numeric | NULL]
Reference point. Set to the maximum in each dimension by default if not pro-
vided.

... [any]
Not used at the moment.

offset [numeric(1)]
Offset to be added to each component of the reference point only in the case
where no reference is provided and one is calculated automatically.

Value

[numeric(1)] Dominated hypervolume in the case of computeHV and the dominated hypervolume
contributions for each point in the case of computeHVContr.

Note

: Keep in mind that this function assumes all objectives to be minimized. In case at least one
objective is to be maximized the matrix x needs to be transformed accordingly in advance.

computeIndicators 15

computeIndicators Computation of EMOA performance indicators.

Description

Given a data.frame of Pareto-front approximations for different sets of problems, algorithms and
replications, the function computes sets of unary and binary EMOA performance indicators. This
function makes use of parallelMap to parallelize the computation of indicators.

Usage

computeIndicators(
df,
obj.cols = c("f1", "f2"),
unary.inds = NULL,
binary.inds = NULL,
normalize = FALSE,
offset = 0,
ref.points = NULL,
ref.sets = NULL

)

Arguments

df [data.frame]
Data frame with columns obj.cols, “prob”, “algorithm” and “repl”.

obj.cols [character(>= 2)]
Column names of the objective functions. Default is c("f1", "f2"), i.e., the
bi-objective case is assumed.

unary.inds [list]
Named list of unary indicators which shall be calculated. Each component must
be another list with mandatory argument fun (the function which calculates the
indicator) and optional argument pars (a named list of parameters for fun).
Function fun must have the signiture “function(points, arg1, ..., argk, ...)”. The
arguments “points” and “...” are mandatory, the remaining are optional. The
names of the components on the first level are used for the column names of
the output data.frame. Default is list(HV = list(fun = computeHV)), i.e., the
dominated Hypervolume indicator.

binary.inds [list]
Named list of binary indicators which shall be applied for each algorithm com-
bination. Parameter binary.inds needs the same structure as unary.inds.
However, the function signature of fun is slighly different: “function(points1,
points2, arg1, ..., argk, ...)”. See function emoaIndEps for an example. Default
is list(EPS = list(fun = emoaIndEps)).

16 computeInvertedGenerationalDistance

normalize [logical(1)]
Normalize approximation sets to [0, 1]p where p is the number of objectives?
Normalization is done on the union of all approximation sets for each problem.
Default is FALSE.

offset [numeric(1)]
Offset added to reference point estimations. Default is 0.

ref.points [list]
Named list of numeric vectors (the reference points). The names must be the
unique problem names in df$prob or a subset of these. If NULL (the default),
reference points are estimated from the approximation sets for each problem.

ref.sets [list]
Named list matrizes (the reference sets). The names must be the unique problem
names in df$prob or a subset of these. If NULL (the default), reference points
are estimated from the approximation sets for each problem.

Value

[list] List with components “unary” (data frame of unary indicators), “binary” (list of matrizes of
binary indicators), “ref.points” (list of reference points used) and “ref.sets” (reference sets used).

References

[1] Knowles, J., Thiele, L., & Zitzler, E. (2006). A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Retrieved from https://sop.tik.ee.ethz.ch/KTZ2005a.pdf [2]
Knowles, J., & Corne, D. (2002). On Metrics for Comparing Non-Dominated Sets. In Proceedings
of the 2002 Congress on Evolutionary Computation Conference (CEC02) (pp. 711–716). Honolulu,
HI, USA: Institute of Electrical and Electronics Engineers. [3] Okabe, T., Yaochu, Y., & Sendhoff,
B. (2003). A Critical Survey of Performance Indices for Multi-Objective Optimisation. In Pro-
ceedings of the 2003 Congress on Evolutionary Computation Conference (CEC03) (pp. 878–885).
Canberra, ACT, Australia: IEEE.

computeInvertedGenerationalDistance

Computes Inverted Generational Distance.

Description

Helper to compute the Inverted Generational Distance (IGD) between two sets of points.

Usage

computeInvertedGenerationalDistance(
A,
B,
p = 1,
normalize = FALSE,
dist.fun = computeEuclideanDistance

)

dominated 17

Arguments

A [matrix]
First point set (each column corresponds to a point).

B [matrix]
Second point set (each column corresponds to a point).

p [numeric(1)]
Parameter p of the average Hausdoff metric. Default is 1.

normalize [logical(1)]
Should the front be normalized on basis of B? Default is FALSE.

dist.fun [matrix]
Distance function to compute distance between points x and y. Expects a single
numeric vector d with the coordinate-wise differences di = (xi - yi). Default is
computeEuclideanDist.

Value

[numeric(1)]

dominated Check for pareto dominance.

Description

These functions take a numeric matrix x where each column corresponds to a point and return a
logical vector. The i-th position of the latter is TRUE if the i-th point is dominated by at least one
other point for dominated and FALSE for nonDominated.

Usage

dominated(x)

nondominated(x)

Arguments

x [matrix]
Numeric (d x n) matrix where d is the number of objectives and n is the number
of points.

Value

[logical]

18 doNondominatedSorting

dominates Dominance relation check.

Description

Check if a vector dominates another (dominates) or is dominated by another (isDominated). There
are corresponding infix operators dominates and isDominatedBy.

Usage

dominates(x, y)

isDominated(x, y)

x %dominates% y

x %isDominatedBy% y

Arguments

x [numeric]
First vector.

y [numeric]
Second vector.

Value

[logical(1)]

doNondominatedSorting Fast non-dominated sorting algorithm.

Description

Fast non-dominated sorting algorithm proposed by Deb. Non-dominated sorting expects a set of
points and returns a set of non-dominated fronts. In short words this is done as follows: the non-
dominated points of the entire set are determined and assigned rank 1. Afterwards all points with
the current rank are removed, the rank is increased by one and the procedure starts again. This is
done until the set is empty, i.~e., each point is assigned a rank.

Usage

doNondominatedSorting(x)

ecr 19

Arguments

x [matrix]
Numeric matrix of points. Each column contains one point.

Value

[list] List with the following components

ranks Integer vector of ranks of length ncol(x). The higher the rank, the higher the domination
front the corresponding point is located on.

dom.counter Integer vector of length ncol(x). The i-th element is the domination number of the
i-th point.

Note

This procedure is the key survival selection of the famous NSGA-II multi-objective evolutionary
algorithm (see nsga2).

References

[1] Deb, K., Pratap, A., and Agarwal, S. A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (8) (2002), 182-197.

ecr Interface to ecr similar to the optim function.

Description

The most flexible way to setup evolutionary algorithms with ecr is by explicitely writing the evolu-
tionary loop utilizing various ecr utlity functions. However, in everyday life R users frequently need
to optimize a single-objective R function. The ecr function thus provides a more R like interface
for single objective optimization similar to the interface of the optim function.

Usage

ecr(
fitness.fun,
minimize = NULL,
n.objectives = NULL,
n.dim = NULL,
lower = NULL,
upper = NULL,
n.bits,
representation,
mu,
lambda,
perm = NULL,

20 ecr

p.recomb = 0.7,
p.mut = 0.3,
survival.strategy = "plus",
n.elite = 0L,
log.stats = list(fitness = list("min", "mean", "max")),
log.pop = FALSE,
monitor = NULL,
initial.solutions = NULL,
parent.selector = NULL,
survival.selector = NULL,
mutator = NULL,
recombinator = NULL,
terminators = list(stopOnIters(100L)),
...

)

Arguments

fitness.fun [function]
The fitness function.

minimize [logical(n.objectives)]
Logical vector with ith entry TRUE if the ith objective of fitness.fun shall
be minimized. If a single logical is passed, it is assumed to be valid for each
objective.

n.objectives [integer(1)]
Number of objectives of obj.fun. Optional if obj.fun is a benchmark function
from package smoof.

n.dim [integer(1)]
Dimension of the decision space.

lower [numeric]
Vector of minimal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

upper [numeric]
Vector of maximal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

n.bits [integer(1)]
Number of bits to use for binary representation.

representation [character(1)]
Genotype representation of the parameters. Available are “binary”, “float”, “per-
mutation” and “custom”.

mu [integer(1)]
Number of individuals in the population.

lambda [integer(1)]
Number of individuals generated in each generation.

ecr 21

perm [integer(1) | vector]
Either a single integer number. In this case the set is assumed to be 1:perm.
Alternatively, a set, i.e., a vector of elements can be passed which should form
each individual.

p.recomb [numeric(1)]
Probability of two parents to perform crossover. Default is 0.7.

p.mut [numeric(1)]
The probability that the mutation operator will be applied to a child. Refers only
to the application of the mutation operator, not to the probability of mutating
individual genes of the respective child. Default is 0.1.

survival.strategy

[character(1)]
Determines the survival strategy used by the EA. Possible are “plus” for a clas-
sical (mu + lambda) strategy and “comma” for (mu, lambda). Default is “plus”.

n.elite [integer(1)]
Number of fittest individuals of the current generation that shall be copied to the
next generation without changing. Keep in mind, that the algorithm does not
care about this option if the survival.strategy is set to ’plus’. Default is 0.

log.stats [list]
(Named) list of scalar functions to compute statistics on the fitness values in
each generation. See initLogger for more information. Default is to log fitness
minimum, mean and maximum values.

log.pop [logical(1)]
Shall the entire population be saved in each generation? Default is FALSE.

monitor [function]
Monitoring function. Default is NULL, i.e. no monitoring.

initial.solutions

[list]
List of individuals which should be placed in the initial population. If the num-
ber of passed individuals is lower than mu, the population will be filled up by
individuals generated by the corresponding generator. Default is NULL, i.e., the
entire population is generated by the population generator.

parent.selector

[ecr_selector]
Selection operator which implements a procedure to copy individuals from a
given population to the mating pool, i. e., allow them to become parents.

survival.selector

[ecr_selector]
Selection operator which implements a procedurce to extract individuals from a
given set, which should survive and set up the next generation.

mutator [ecr_mutator]
Mutation operator of type ecr_mutator.

recombinator [ecr_recombinator]
Recombination operator of type ecr_recombinator.

22 ecr_result

terminators [list]
List of stopping conditions of type “ecr_terminator”. Default is to stop after 100
iterations.

... [any]
Further arguments passed down to fitness.fun.

Value

[ecr_result]

Examples

fn = function(x) {
sum(x^2)

}
lower = c(-5, -5); upper = c(5, 5)
res = ecr(fn, n.dim = 2L, n.objectives = 1L, lower = lower, upper = lower,
representation = "float", mu = 20L, lambda = 10L,
mutator = setup(mutGauss, lower = lower, upper = upper))

ecr_parallelization Parallelization in ecr

Description

In ecr it is possible to parallelize the fitness function evaluation to make use, e.g., of multiple CP
cores or nodes in a HPC cluster. For maximal flexibility this is realized by means of the paral-
lelMap package (see the official GitHub page for instructions on how to set up parallelization).
The different levels of parallelization can be specified in the parallelStart* function. At them
moment only the level “ecr.evaluateFitness” is supported.

Keep in mind that parallelization comes along with some overhead. Thus activating paralleliza-
tion, e.g., for evaluation a fitness function which is evaluated lightning-fast, may result in higher
computation time. However, if the function evaluations are computationally more expensive, paral-
lelization leads to significant running time benefits.

ecr_result Result object.

Description

S3 object returned by ecr containing the best found parameter setting and value in the single-
objective case and the Pareto-front/-set in case of a multi-objective optimization problem. Moreover
a set of further information, e.g., reason of termination, the control object etc. are returned.

The single objective result object contains the following fields:

https://github.com/mlr-org/parallelMap

emoaIndEps 23

task The ecr_optimization_task.
best.x Overall best parameter setting.
best.y Overall best objective value.
log Logger object.
last.population Last population.
last.fitness Numeric vector of fitness values of the last population.
message Character string describing the reason of termination.

In case of a solved multi-objective function the result object contains the following fields:

task The ecr_optimization_task.
log Logger object.
pareto.idx Indizes of the non-dominated solutions in the last population.
pareto.front (n x d) matrix of the approximated non-dominated front where n is the number of

non-dominated points and d is the number of objectives.
pareto.set Matrix of decision space values resulting with objective values given in pareto.front.
last.population Last population.
message Character string describing the reason of termination.

emoaIndEps EMOA performance indicators

Description

Functions for the computation of unary and binary measures which are useful for the evaluation of
the performace of EMOAs. See the references section for literature on these indicators.

Given a set of points points, emoaIndEps computes the unary epsilon-indicator provided a set of
reference points ref.points.

The emoaIndHV function computes the hypervolume indicator Hyp(X, R, r). Given a set of points X
(points), another set of reference points R (ref.points) (which maybe the true Pareto front) and
a reference point r (ref.point) it is defined as Hyp(X, R, r) = HV(R, r) - HV(X, r).

Function emoaIndR1, emoaIndR2 and emoaIndR3 calculate the R1, R2 and R3 indicator respec-
tively.

Function emoaIndMD computes the minimum distance indicator, i.e., the minimum Euclidean dis-
tance between two points of the set points while function emoaIndM1 determines the mean Eu-
clidean distance between points and points from a reference set ref.points.

Function emoaIndC calculates the coverage of the sets points (A) and ref.points (B). This is the
ratio of points in B which are dominated by at least one solution in A.

emoaIndONVG calculates the “Overall Non-dominated Vector Generation” indicator. Despite its
complicated name it is just the number of non-dominated points in points.

Functions emoaIndSP and emoaIndDelta calculate spacing indicators. The former was proposed by
Schott: first calculate the sum of squared distances between minimal distancesof points to all other
points and the mean of these minimal distance. Next, normalize by the number of points minus 1
and finally calculate the square root. In contrast, Delta-indicator

24 emoaIndEps

Usage

emoaIndEps(points, ref.points, ...)

emoaIndHV(points, ref.points, ref.point = NULL, ...)

emoaIndR1(
points,
ref.points,
ideal.point = NULL,
nadir.point = NULL,
lambda = NULL,
utility = "tschebycheff",
...

)

emoaIndR2(
points,
ref.points,
ideal.point = NULL,
nadir.point = NULL,
lambda = NULL,
utility = "tschebycheff",
...

)

emoaIndR3(
points,
ref.points,
ideal.point = NULL,
nadir.point = NULL,
lambda = NULL,
utility = "tschebycheff",
...

)

emoaIndMD(points, ...)

emoaIndC(points, ref.points, ...)

emoaIndM1(points, ref.points, ...)

emoaIndONVG(points, ...)

emoaIndGD(
points,
ref.points,
p = 1,
normalize = FALSE,

emoaIndEps 25

dist.fun = computeEuclideanDistance,
...

)

emoaIndIGD(
points,
ref.points,
p = 1,
normalize = FALSE,
dist.fun = computeEuclideanDistance,
...

)

emoaIndDeltap(
points,
ref.points,
p = 1,
normalize = FALSE,
dist.fun = computeEuclideanDistance,
...

)

emoaIndSP(points, ...)

emoaIndDelta(points, ...)

Arguments

points [matrix]
Matrix of points.

ref.points [matrix]
Set of reference points.

... [any]
Not used at the moment.

ref.point [numeric]
A single reference point used, e.g., for the computation of the hypervolume
indicator via emoaIndHV. If NULL the nadir point of the union of the points and
ref.points is used.

ideal.point [numeric]
The utopia point of the true Pareto front, i.e., each component of the point con-
tains the best value if the other objectives are neglected.

nadir.point [numeric]
Nadir point of the true Pareto front.

lambda [integer(1)]
Number of weight vectors to use in estimating the utility function.

utility [character(1)]

26 evaluateFitness

Name of the utility function to use. Must be one of “weightedsum”, “tscheby-
cheff” or “augmented tschbycheff”.

p [numeric(1)]
Parameter p of the average Hausdoff metric. Default is 1.

normalize [logical(1)]
Should the front be normalized on basis of B? Default is FALSE.

dist.fun [matrix]
Distance function to compute distance between points x and y. Expects a single
numeric vector d with the coordinate-wise differences di = (xi - yi). Default is
computeEuclideanDist.

Value

[numeric(1)] Epsilon indicator.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), makeEMOAIndicator(), niceCellFormater(),
normalize(), plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

evaluateFitness Computes the fitness value(s) for each individual of a given set.

Description

This function expects a list of individuals, computes the fitness and always returns a matrix of fitness
values; even in single-objective optimization a (1 x n) matrix is returned for consistency, where n
is the number of individuals. This function makes use of parallelMap to parallelize the fitness
evaluation.

Usage

evaluateFitness(control, inds, ...)

Arguments

control [ecr_control]
Control object.

inds [list]
List of individuals.

... [any]
Optional parameters passed down to fitness function.

Value

[matrix].

explode 27

explode Explode/implode data frame column(s).

Description

Given a data frame and a column name, function explode splits the content of a column by a speci-
fied delimiter (thus exploded) into multiple columns. Function implode does vice versa, i.e., given
a non-empty set of column names or numbers, the function glues together the columns. Hence,
functions explode and implode are kind of inverse to each other.

Usage

explode(df, col, by = ".", keep = FALSE, col.names = NULL)

implode(df, cols, by = ".", keep = FALSE, col.name)

Arguments

df [data.frame]
Data frame.

col [character(1)]
Name of column which should be exploded.

by [character(1)]
Delimeter used to split cell entries (for explode) or glue them together (for
implode).

keep [logical(1)]
Should exploded or imploded source column be kept? Default is FALSE.

col.names [character]
Names of new columns. Default is “col.1”, ..., “col.k”, where k is the number
of elements each cell in column col is split into.

cols [character(1)]
Names of columns (or column number) which should be imploded.

col.name [character(1)]
Name of new column.

Value

[data.frame] Modified data frame.

Examples

df = data.frame(x = 1:3, y = c("a.c", "a.b", "a.c"))
df.ex = explode(df, col = "y", col.names = c("y1", "y2"))
df.im = implode(df.ex, cols = c("y1", "y2"), by = "---", col.name = "y", keep = TRUE)

28 filterDuplicated

filterDuplicated Filter approximation sets by duplicate objective vectors.

Description

Filter approximation sets by duplicate objective vectors.

Usage

filterDuplicated(x, ...)

S3 method for class 'data.frame'
filterDuplicated(x, ...)

S3 method for class 'matrix'
filterDuplicated(x, ...)

S3 method for class 'ecr_multi_objective_result'
filterDuplicated(x, ...)

S3 method for class 'list'
filterDuplicated(x, ...)

Arguments

x [object]
Object of type data frame (objectives column-wise), matrix (objectives row-
wise), ecr_multi_objective_result or list (with components “pareto.front”)
and “pareto.set”.

... [any]
Not used at the moment

Value

[object] Modified input x.

Note

Note that this may be misleading if there can be solutions with identical objective function values
but different values in decision space.

generateOffspring 29

generateOffspring Helper functions for offspring generation

Description

Function mutate expects a control object, a list of individuals, and a mutation probability. The
mutation operator registered in the control object is then applied with the given probability to each
individual. Function recombinate expects a control object, a list of individuals as well as their
fitness matrix and creates lambda offspring individuals by recombining parents from inds. Which
parents take place in the parent selection depends on the parent.selector registered in the control
object. Finally, function generateOffspring is a wrapper for both recombinate and mutate. Both
functions are applied subsequently to generate new individuals by variation and mutation.

Usage

generateOffspring(control, inds, fitness, lambda, p.recomb = 0.7, p.mut = 0.1)

mutate(control, inds, p.mut = 0.1, slot = "mutate", ...)

recombinate(
control,
inds,
fitness,
lambda = length(inds),
p.recomb = 0.7,
slot = "recombine",
...

)

Arguments

control [ecr_control]
Control object.

inds [list]
List of individuals.

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

lambda [integer(1)]
Number of individuals generated in each generation.

p.recomb [numeric(1)]
Probability of two parents to perform crossover. Default is 0.7.

p.mut [numeric(1)]
The probability that the mutation operator will be applied to a child. Refers only
to the application of the mutation operator, not to the probability of mutating
individual genes of the respective child. Default is 0.1.

30 generators

slot [character(1)]
The slot of the control object which contains the registered operator to use. De-
fault is “mutate” for mutate and “recombine” for recombinate. In most cases
there is no need to change this. However, it might be useful if you make use
of different mutation operators registerted, e.g., in the slots “mutate1” and “mu-
tate2”.

... [any]
Furhter arguments passed down to recombinator/mutator. There parameters will
overwrite parameters in par.list.

Value

[list] List of individuals.

generatesMultipleChildren

Does the recombinator generate multiple children?

Description

Returns as to whether the recombinator generates multiple Children.

Usage

generatesMultipleChildren(recombinator)

Arguments

recombinator [function]
Actual mutation operator.

Value

[logical] Boolean

generators Population generators

Description

Utility functions to build a set of individuals. The function gen expects an R expression and a
number n in order to create a list of n individuals based on the given expression. Functions genBin,
genPerm and genReal are shortcuts for initializing populations of binary strings, permutations or
real-valued vectors respectively.

getFront 31

Usage

gen(expr, n)

genBin(n, n.dim)

genPerm(n, n.dim)

genReal(n, n.dim, lower, upper)

Arguments

expr [R expression]
Expression to generate a single individual.

n [integer(1)]
Number of individuals to create.

n.dim [integer(1)]
Dimension of the decision space.

lower [numeric]
Vector of minimal values for each parameter of the decision space in case of
float encoding.

upper [numeric]
Vector of maximal values for each parameter of the decision space in case of
float encoding.

Value

[list]

getFront Extract fitness values from Pareto archive.

Description

Get all non-dominated points in objective space, i.e., an (m x n) matrix of fitness with m being the
number of objectives and n being the number of non-dominated points in the Pareto archive.

Usage

getFront(x)

Arguments

x [ecr_pareto_archive]
Pareto archive.

Value

[matrix]

32 getNumberOfChildren

getIndividuals Extract individuals from Pareto archive.

Description

Get the non-dominated individuals logged in the Pareto archive.

Usage

getIndividuals(x)

Arguments

x [ecr_pareto_archive]
Pareto archive.

Value

[list]

See Also

Other ParetoArchive: getSize(), initParetoArchive(), updateParetoArchive()

getNumberOfChildren Number of children

Description

Returns the number children generated by the recombinator

Usage

getNumberOfChildren(recombinator)

Arguments

recombinator [function]
Actual mutation operator.

Value

[numeric] Number of children generated

getNumberOfParentsNeededForMating 33

getNumberOfParentsNeededForMating

Number of parents needed for mating

Description

Returns the number of parents needed for mating.

Usage

getNumberOfParentsNeededForMating(recombinator)

Arguments

recombinator [function]
Actual mutation operator.

Value

[numeric] Number of Parents need for mating

getPopulationFitness Access to logged population fitness.

Description

Returns the fitness values of all individuals as a data.frame with columns f1, ..., fo, where o is the
number of objectives and column “gen” for generation.

Usage

getPopulationFitness(log, trim = TRUE)

Arguments

log [ecr_logger]
The log generated by initLogger.

trim [logical(1)]
Should unused lines in the logged be cut off? Usually one wants this behaviour.
Thus the default is TRUE.

Value

[list] List of populations.

See Also

Other logging: getPopulations(), getStatistics(), initLogger(), updateLogger()

34 getSize

getPopulations Access to logged populations.

Description

Simple getter for the logged populations.

Usage

getPopulations(log, trim = TRUE)

Arguments

log [ecr_logger]
The log generated by initLogger.

trim [logical(1)]
Should unused lines in the logged be cut off? Usually one wants this behaviour.
Thus the default is TRUE.

Details

This functions throws an error if the logger was initialized with log.pop = FALSE (see initLogger).

Value

[list] List of populations.

See Also

Other logging: getPopulationFitness(), getStatistics(), initLogger(), updateLogger()

getSize Get size of Pareto-archive.

Description

Returns the number of stored individuals in Pareto archive.

Usage

getSize(x)

Arguments

x [ecr_pareto_archive]
Pareto archive.

getStatistics 35

Value

[integer(1)]

See Also

Other ParetoArchive: getIndividuals(), initParetoArchive(), updateParetoArchive()

getStatistics Access the logged statistics.

Description

Simple getter for the logged fitness statistics.

Usage

getStatistics(log, trim = TRUE)

Arguments

log [ecr_logger]
The log generated by initLogger.

trim [logical(1)]
Should unused lines in the logged be cut off? Usually one wants this behaviour.
Thus the default is TRUE.

Value

[data.frame] Logged statistics.

See Also

Other logging: getPopulationFitness(), getPopulations(), initLogger(), updateLogger()

36 initECRControl

getSupportedRepresentations

Get supported representations.

Description

Returns the character vector of representation which the operator supports.

Usage

getSupportedRepresentations(operator)

Arguments

operator [ecr_operator]
Operator object.

Value

[character] Vector of representation types.

initECRControl Control object generator.

Description

The control object keeps information on the objective function and a set of evolutionary compo-
nents, i.e., operators.

Usage

initECRControl(fitness.fun, n.objectives = NULL, minimize = NULL)

Arguments

fitness.fun [function]
The fitness function.

n.objectives [integer(1)]
Number of objectives of obj.fun. Optional if obj.fun is a benchmark function
from package smoof.

minimize [logical(n.objectives)]
Logical vector with ith entry TRUE if the ith objective of fitness.fun shall
be minimized. If a single logical is passed, it is assumed to be valid for each
objective.

initLogger 37

Value

[ecr_control]

initLogger Initialize a log object.

Description

Logging is a central aspect of each EA. Besides the final solution(s) especially in research often we
need to keep track of different aspects of the evolutionary process, e.g., fitness statistics. The logger
of ecr keeps track of different user-defined statistics and the population. It may also be used to
check stopping conditions (see makeECRTerminator). Most important this logger is used internally
by the ecr black-box interface.

Usage

initLogger(
control,
log.stats = list(fitness = list("min", "mean", "max")),
log.extras = NULL,
log.pop = FALSE,
init.size = 1000L

)

Arguments

control [ecr_control]
Control object.

log.stats [list]
List of lists for statistic computation on attributes of the individuals of the pop-
ulation. Each entry should be named by the attribute it should be based on, e.g.,
fitness, and should contain a list of R functions as a character string or a a list
with elements fun for the function, and pars for additional parameters which
shall be passed to the corresponding function. Each function is required to re-
turn a scalar numeric value. By default the minimum, mean and maximum of
the fitness values is computed. Since fitness statistics are the most important
ones these do not have to be stored as attributes, but can be passed as a matrix
to the update function.

log.extras [character]
Possibility to instruct the logger to store additional scalar values in each genera-
tion. Named character vector where the names indicate the value to store and the
value indicates the corresponding data types. Currently we support all atomic
modes of vector expect “factor” and “raw”.

log.pop [logical(1)]
Shall the entire population be saved in each generation? Default is FALSE.

38 initLogger

init.size [integer(1)]
Initial number of rows of the slot of the logger, where the fitness statistics are
stored. The size of the statistics log is doubled each time an overflow occurs.
Default is 1000.

Value

[ecr_logger] An S3 object of class ecr_logger with the following components:

log.stats The log.stats list.

log.pop The log.pop parameter.

init.size Initial size of the log.

env The actual log. This is an R environment which ensures, that in-place modification is possible.

Note

Statistics are logged in a data.frame.

See Also

Other logging: getPopulationFitness(), getPopulations(), getStatistics(), updateLogger()

Examples

control = initECRControl(function(x) sum(x), minimize = TRUE,
n.objectives = 1L)

control = registerECROperator(control, "mutate", mutBitflip, p = 0.1)
control = registerECROperator(control, "selectForMating", selTournament, k = 2)
control = registerECROperator(control, "selectForSurvival", selGreedy)

log = initLogger(control,
log.stats = list(
fitness = list("mean", "myRange" = function(x) max(x) - min(x)),
age = list("min", "max")

), log.pop = TRUE, init.size = 1000L)

simply pass stuff down to control object constructor
population = initPopulation(mu = 10L, genBin, n.dim = 10L)
fitness = evaluateFitness(control, population)

append fitness to individuals and init age
for (i in seq_along(population)) {

attr(population[[i]], "fitness") = fitness[, i]
attr(population[[i]], "age") = 1L

}

for (iter in seq_len(10)) {
generate offspring
offspring = generateOffspring(control, population, fitness, lambda = 5)
fitness.offspring = evaluateFitness(control, offspring)

initParetoArchive 39

update age of population
for (i in seq_along(population)) {

attr(population[[i]], "age") = attr(population[[i]], "age") + 1L
}

set offspring attributes
for (i in seq_along(offspring)) {

attr(offspring[[i]], "fitness") = fitness.offspring[, i]
update age
attr(offspring[[i]], "age") = 1L

}

sel = replaceMuPlusLambda(control, population, offspring)

population = sel$population
fitness = sel$fitness

do some logging
updateLogger(log, population, n.evals = 5)

}
head(getStatistics(log))

initParetoArchive Initialize Pareto Archive.

Description

A Pareto archive is usually used to store all / a part of the non-dominated points stored during a run
of an multi-objective evolutionary algorithm.

Usage

initParetoArchive(control, max.size = Inf, trunc.fun = NULL)

Arguments

control [ecr_control]
Control object.

max.size [integer(1)]
Maximum capacity of the Pareto archive, i.e., the maximal number of non-
dominated points which can be stored in the archive. Default is Inf, i.e., (theo-
retically) unbounded capacity.

trunc.fun [function(archive, inds, fitness, ...)]
In case the archive is limited in capacity, i.e., max.size is not infinite, this func-
tion is called internally if an archive overflow occurs. This function expects
the archive, a list of individuals inds, a matrix of fitness values (each column
contains the fitness value(s) of one individual) fitness and further optional ar-
guments ... which may be used by the internals of trunc.fun. The function
must return a list with components “fitness” and “inds” which shall be the sub-
sets of fitness and inds respectively, which should be kept by the archive.

40 initPopulation

Value

[ecr_pareto_archive]

See Also

Other ParetoArchive: getIndividuals(), getSize(), updateParetoArchive()

initPopulation Helper function to build initial population.

Description

Generates the initial population. Optionally a set of initial solutions can be passed.

Usage

initPopulation(mu, gen.fun, initial.solutions = NULL, ...)

Arguments

mu [integer(1)]
Number of individuals in the population.

gen.fun [function]
Function used to generate initial solutions, e.g., genBin.

initial.solutions

[list]
List of individuals which should be placed in the initial population. If the num-
ber of passed individuals is lower than mu, the population will be filled up by
individuals generated by the corresponding generator. Default is NULL, i.e., the
entire population is generated by the population generator.

... [any]
Further parameters passed to gen.fun.

Value

[ecr_population]

is.supported 41

is.supported Check if ecr operator supports given representation.

Description

Check if the given operator supportds a certain representation, e.g., “float”.

Usage

is.supported(operator, representation)

Arguments

operator [ecr_operator]
Object of type ecr_operator.

representation [character(1)]
Representation as a string.

Value

[logical(1)] TRUE, if operator supports the representation type.

isEcrOperator Check if given function is an ecr operator.

Description

Checks if the passed object is of type ecr_operator.

Usage

isEcrOperator(obj)

Arguments

obj [any]
Arbitrary R object to check.

Value

[logical(1)]

42 makeEMOAIndicator

makeECRMonitor Factory method for monitor objects.

Description

Monitor objects serve for monitoring the optimization process, e.g., printing some status messages
to the console. Each monitor includes the functions before, step and after, each being a function
and expecting a log log of type ecr_logger and ... as the only parameters. This way the logger
has access to the entire log.

Usage

makeECRMonitor(before = NULL, step = NULL, after = NULL, ...)

Arguments

before [function]
Function called one time after initialization of the EA.

step [function]
Function applied after each iteration of the algorithm.

after [function]
Function applied after the EA terminated.

... [any]
Not used.

Value

[ecr_monitor] Monitor object.

makeEMOAIndicator Constructor for EMOA indicators.

Description

Simple wrapper for function which compute performance indicators for multi-objective stochastic
algorithm. Basically this function appends some meta information to the passed function fun.

Usage

makeEMOAIndicator(fun, minimize, name, latex.name)

makeMutator 43

Arguments

fun [function(points, ...)]
Function which expects a numeric matrix “points” as first argument. Optional
named arguments (often “ref.point” for a reference point or “ref.points” for a
reference set, e.g., the true Pareto-front) are allowed. See implementations of
existing indicators for examples.

minimize [logical(1)]
Lower values indicate better performance?

name [character(1)]
Short name of the indicator. Used, e.g., as column name for the indicator in the
data.frame returned by computeIndicators.

latex.name [character(1)]
LaTeX representation of the indicator. Used in LaTeX-table output statistical
tests (see toLatex).

Value

[function(points, ...)] Argument fun with all other arguments appended.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), niceCellFormater(),
normalize(), plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

makeMutator Construct a mutation operator.

Description

Helper function which constructs a mutator, i. e., a mutation operator.

Usage

makeMutator(mutator, supported = getAvailableRepresentations())

Arguments

mutator [function]
Actual mutation operator.

supported [character]
Vector of strings/names of supported parameter representations. Possible choices:
“permutation”, “float”, “binary” or “custom”.

Value

[ecr_mutator] Mutator object.

44 makeOptimizationTask

makeOperator Construct evolutionary operator.

Description

Helper function which constructs an evolutionary operator.

Usage

makeOperator(operator, supported = getAvailableRepresentations())

Arguments

operator [function]
Actual operator.

supported [character]
Vector of names of supported parameter representations. Possible choices: “per-
mutation”, “float”, “binary” or “custom”.

Value

[ecr_operator] Operator object.

Note

In general you will not need this function, but rather one of its deriviatives like makeMutator or
makeSelector.

makeOptimizationTask Creates an optimization task.

Description

An optimization task consists of the fitness/objective function, the number of objectives, the “direc-
tion” of optimization, i.e., which objectives should be minimized/maximized and the names of the
objectives.

Usage

makeOptimizationTask(
fun,
n.objectives = NULL,
minimize = NULL,
objective.names = NULL

)

makeRecombinator 45

Arguments

fun [function | smoof_function]
Fitness/objective function.

n.objectives [integer(1)]
Number of objectives. This must be a positive integer value unless fun is of type
smoof_function.

minimize [logical]
A logical vector indicating which objectives to minimize/maximize. By default
all objectives are assumed to be minimized.

objective.names

[character]
Names for the objectuves. Default is NULL. In this case the names are set to y1,
..., yn with n equal to n.objectives and simply y in the single-objective case.

Value

[ecr_optimization_task]

makeRecombinator Construct a recombination operator.

Description

Helper function which constructs a recombinator, i. e., a recombination operator.

Usage

makeRecombinator(
recombinator,
supported = getAvailableRepresentations(),
n.parents = 2L,
n.children = NULL

)

Arguments

recombinator [function]
Actual mutation operator.

supported [character]
Vector of strings/names of supported parameter representations. Possible choices:
“permutation”, “float”, “binary” or “custom”.

n.parents [integer(1)]
Number of parents supported.

n.children [integer(1)]
How many children does the recombinator produce? Default is 1.

46 makeSelector

Value

[ecr_recombinator] Recombinator object.

Note

If a recombinator returns more than one child, the multiple.children parameter needs to be TRUE,
which is the default. In case of multiple children produced these have to be placed within a list.

makeSelector Construct a selection operator.

Description

Helper function which defines a selector method, i. e., an operator which takes the population and
returns a part of it for mating or survival.

Usage

makeSelector(
selector,
supported = getAvailableRepresentations(),
supported.objectives,
supported.opt.direction = "minimize"

)

Arguments

selector [function]
Actual selection operator.

supported [character]
Vector of strings/names of supported parameter representations. Possible choices:
“permutation”, “float”, “binary” or “custom”.

supported.objectives

[character]
At least one of “single-objective” or “multi-objective”.

supported.opt.direction

[character(1-2)]
Does the selector work for maximization tasks xor minimization tasks or both?
Default is “minimize”, which means that the selector selects in favour of low
fitness values.

Value

[ecr_selector] Selector object.

makeTerminator 47

makeTerminator Generate stopping condition.

Description

Wrap a function within a stopping condition object.

Usage

makeTerminator(condition.fun, name, message)

Arguments

condition.fun [function]
Function which takes a logger object log (see initLogger) and returns a single
logical.

name [character(1)]
Identifier for the stopping condition.

message [character(1)]
Message which should be stored in the termination object, if the stopping con-
dition is met.

Value

[ecr_terminator]

mcMST mcMST

Description

Pareto-front approximations for some graph problems obtained by several algorithms for the multi-
criteria minimum spanning tree (mcMST) problem.

Usage

mcMST

48 mutBitflip

Format

A data frame with four variables:

f1 First objective (to be minimized).

f2 Second objective (to be minimized).

algorithm Short name of algorithm used.

prob Short name of problem instance.

repl Algorithm run.

The data is based on the mcMST package.

mutBitflip Bitplip mutator.

Description

This operator works only on binary representation and flips each bit with a given probability p ∈
(0, 1). Usually it is recommended to set p = 1

n where n is the number of bits in the representation.

Usage

mutBitflip(ind, p = 0.1)

Arguments

ind [binary]
Binary vector, i.e., vector with elements 0 and 1 only.

p [numeric(1)]
Probability to flip a single bit. Default is 0.1.

Value

[binary]

References

[1] Eiben, A. E. & Smith, James E. (2015). Introduction to Evolutionary Computing (2nd ed.).
Springer Publishing Company, Incorporated. 52.

See Also

Other mutators: mutGauss(), mutInsertion(), mutInversion(), mutJump(), mutPolynomial(),
mutScramble(), mutSwap(), mutUniform()

mutGauss 49

mutGauss Gaussian mutator.

Description

Default Gaussian mutation operator known from Evolutionary Algorithms. This mutator is applica-
ble only for representation="float". Given an individual x ∈ Rl this mutator adds a Gaussian
distributed random value to each component of x, i.~e., x̃i = xi + σN (0, 1).

Usage

mutGauss(ind, p = 1L, sdev = 0.05, lower, upper)

Arguments

ind [numeric]
Numeric vector / individual to mutate.

p [numeric(1)]
Probability of mutation for the gauss mutation operator.

sdev [numeric(1)
Standard deviance of the Gauss mutation, i. e., the mutation strength.

lower [numeric]
Vector of minimal values for each parameter of the decision space.

upper [numeric]
Vector of maximal values for each parameter of the decision space.

Value

[numeric]

References

[1] Beyer, Hans-Georg & Schwefel, Hans-Paul (2002). Evolution strategies. Kluwer Academic
Publishers.

[2] Mateo, P. M. & Alberto, I. (2011). A mutation operator based on a Pareto ranking for multi-
objective evolutionary algorithms. Springer Science+Business Meda. 57.

See Also

Other mutators: mutBitflip(), mutInsertion(), mutInversion(), mutJump(), mutPolynomial(),
mutScramble(), mutSwap(), mutUniform()

50 mutInversion

mutInsertion Insertion mutator.

Description

The Insertion mutation operator selects a position random and inserts it at a random position.

Usage

mutInsertion(ind)

Arguments

ind [integer]
Permutation of integers, i.e., vector of integer values.

Value

[integer]

See Also

Other mutators: mutBitflip(), mutGauss(), mutInversion(), mutJump(), mutPolynomial(),
mutScramble(), mutSwap(), mutUniform()

mutInversion Inversion mutator.

Description

The Inversion mutation operator selects two positions within the chromosome at random and inverts
the elements inbetween.

Usage

mutInversion(ind)

Arguments

ind [integer]
Permutation of integers, i.e., vector of integer values.

Value

[integer]

mutJump 51

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutJump(), mutPolynomial(),
mutScramble(), mutSwap(), mutUniform()

mutJump Jump mutator.

Description

The jump mutation operator selects two positions within the chromosome at random, say a and b
with a < b. Next, all elements at positions b− 1, b− 2, ..., a are shifted to the right by one position
and finally the element at position b is assigned at position a.

Usage

mutJump(ind)

Arguments

ind [integer]
Permutation of integers, i.e., vector of integer values.

Value

[integer]

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutInversion(), mutPolynomial(),
mutScramble(), mutSwap(), mutUniform()

mutPolynomial Polynomial mutation.

Description

Performs an polynomial mutation as used in the SMS-EMOA algorithm. Polynomial mutation tries
to simulate the distribution of the offspring of binary-encoded bit flip mutations based on real-valued
decision variables. Polynomial mutation favors offspring nearer to the parent.

Usage

mutPolynomial(ind, p = 0.2, eta = 10, lower, upper)

52 mutScramble

Arguments

ind [numeric]
Numeric vector / individual to mutate.

p [numeric(1)]
Probability of mutation for each gene of an offspring. In other words, the prob-
ability that the value (allele) of a given gene will change. Default is 0.2

eta [numeric(1)
Distance parameter to control the shape of the mutation distribution. Larger
values generate offspring closer to the parents. Default is 10.

lower [numeric]
Vector of minimal values for each parameter of the decision space. Must have
the same length as ind.

upper [numeric]
Vector of maximal values for each parameter of the decision space. Must have
the same length as ind.

Value

[numeric]

References

[1] Deb, Kalyanmoy & Goyal, Mayank. (1999). A Combined Genetic Adaptive Search (GeneAS)
for Engineering Design. Computer Science and Informatics. 26. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.767&rep=rep1&type=pdf

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutInversion(), mutJump(),
mutScramble(), mutSwap(), mutUniform()

mutScramble Scramble mutator.

Description

The Scramble mutation operator selects two positions within the chromosome at random and ran-
domly intermixes the subsequence between these positions.

Usage

mutScramble(ind)

Arguments

ind [integer]
Permutation of integers, i.e., vector of integer values.

mutSwap 53

Value

[integer]

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutInversion(), mutJump(),
mutPolynomial(), mutSwap(), mutUniform()

mutSwap Swap mutator.

Description

Chooses two positions at random and swaps the genes.

Usage

mutSwap(ind)

Arguments

ind [integer]
Permutation of integers, i.e., vector of integer values.

Value

[integer]

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutInversion(), mutJump(),
mutPolynomial(), mutScramble(), mutUniform()

mutUniform Uniform mutator.

Description

This mutation operator works on real-valued genotypes only. It selects a position in the solution
vector at random and replaced it with a uniformally chosen value within the box constraints of the
corresponding parameter. This mutator may proof beneficial in early stages of the optimization
process, since it distributes points widely within the box constraints and thus may hinder premature
convergence. However, in later stages - when fine tuning is necessary, this feature is disadvantegous.

54 niceCellFormater

Usage

mutUniform(ind, lower, upper)

Arguments

ind [numeric]
Numeric vector / individual to mutate.

lower [numeric]
Vector of minimal values for each parameter of the decision space.

upper [numeric]
Vector of maximal values for each parameter of the decision space.

Value

[numeric]

See Also

Other mutators: mutBitflip(), mutGauss(), mutInsertion(), mutInversion(), mutJump(),
mutPolynomial(), mutScramble(), mutSwap()

niceCellFormater Formatter for table cells of LaTeX tables.

Description

This formatter function should be applied to tables where each table cell contains a p-value of a
statistical significance test. See toLatex for an application.

Usage

niceCellFormater(cell, alpha = 0.05)

Arguments

cell [any]
Cell value. In the majority of cases this will be a numeric value.

alpha [numeric(1)]
Significance level of underlying statistical test. Default is 0.05.

Value

Formatted output.

normalize 55

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
normalize(), plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

normalize Normalize approximations set(s).

Description

Normalization is done by subtracting the min.value for each dimension and dividing by the differ-
ence max.value - min.value for each dimension Certain EMOA indicators require all elements to
be strictly positive. Hence, an optional offset is added to each element which defaults to zero.

Usage

normalize(x, obj.cols, min.value = NULL, max.value = NULL, offset = NULL)

Arguments

x [matrix | data.frame]
Either a numeric matrix (each column corresponds to a point) or a data.frame
with columns at least obj.cols.

obj.cols [character(>= 2)]
Column names of the objective functions.

min.value [numeric]
Vector of minimal values of length nrow(x). Only relevant if x is a matrix.
Default is the row-wise minimum of x.

max.value [numeric]
Vector of maximal values of length nrow(x). Only relevant if x is a matrix.
Default is the row-wise maximum of x.

offset [numeric]
Numeric constant added to each normalized element. Useful to make all objec-
tives strictly positive, e.g., located in [1, 2].

Value

[matrix | data.frame]

Note

In case a data.frame is passed and a “prob” column exists, normalization is performed for each
unique element of the “prob” column independently (if existent).

56 nsga2

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), plotDistribution(), plotFront(), plotScatter2d(), plotScatter3d(),
toLatex()

nsga2 Implementation of the NSGA-II EMOA algorithm by Deb.

Description

The NSGA-II merges the current population and the generated offspring and reduces it by means of
the following procedure: It first applies the non dominated sorting algorithm to obtain the nondom-
inated fronts. Starting with the first front, it fills the new population until the i-th front does not fit.
It then applies the secondary crowding distance criterion to select the missing individuals from the
i-th front.

Usage

nsga2(
fitness.fun,
n.objectives = NULL,
n.dim = NULL,
minimize = NULL,
lower = NULL,
upper = NULL,
mu = 100L,
lambda = mu,
mutator = setup(mutPolynomial, eta = 25, p = 0.2, lower = lower, upper = upper),
recombinator = setup(recSBX, eta = 15, p = 0.7, lower = lower, upper = upper),
terminators = list(stopOnIters(100L)),
...

)

Arguments

fitness.fun [function]
The fitness function.

n.objectives [integer(1)]
Number of objectives of obj.fun. Optional if obj.fun is a benchmark function
from package smoof.

n.dim [integer(1)]
Dimension of the decision space.

minimize [logical(n.objectives)]
Logical vector with ith entry TRUE if the ith objective of fitness.fun shall
be minimized. If a single logical is passed, it is assumed to be valid for each
objective.

plotDistribution 57

lower [numeric]
Vector of minimal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

upper [numeric]
Vector of maximal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

mu [integer(1)]
Number of individuals in the population. Default is 100.

lambda [integer(1)]
Offspring size, i.e., number of individuals generated by variation operators in
each iteration. Default is 100.

mutator [ecr_mutator]
Mutation operator of type ecr_mutator.

recombinator [ecr_recombinator]
Recombination operator of type ecr_recombinator.

terminators [list]
List of stopping conditions of type “ecr_terminator”. Default is to stop after 100
iterations.

... [any]
Further arguments passed down to fitness function.

Value

[ecr_multi_objective_result]

Note

This is a pure R implementation of the NSGA-II algorithm. It hides the regular ecr interface and
offers a more R like interface while still being quite adaptable.

References

Deb, K., Pratap, A., and Agarwal, S. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation, 6 (8) (2002), 182-197.

plotDistribution Plot distribution of EMOA indicators.

Description

Visualizes of empirical distributions of unary EMOA indicator based on the results of computeIndicators.

58 plotDistribution

Usage

plotDistribution(
inds,
plot.type = "boxplot",
fill = "algorithm",
facet.type = "grid",
facet.args = list(),
logscale = character()

)

Arguments

inds [data.frame]
Data frame with columns “algorithm”, “prob”, “repl” and one additional column
per EMOA indicator.

plot.type [character(1)]
Either “boxplot” (the default) for boxplots or “violin” for violin plots.

fill [character(1)]
Variable used to fill boxplots. Default is “algorithm”.

facet.type [character(1)]
Which faceting method to use? Pass “wrap” for facet_wrap or “grid” for
facet_grid. Default is “wrap”.

facet.args [list]
Named list of arguments passed down to facet_wrap or facet_grid respec-
tively (depends on facet.type). E.g., nrow to change layout. Default is the
empty list. In this case data is grouped by problem and indicator.

logscale [character]
Vector of indicator names which should be log-transformed prior to visualiza-
tion. Default is the empty character vector.

Value

[ggplot]

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), normalize(), plotFront(), plotScatter2d(), plotScatter3d(), toLatex()

plotFront 59

plotFront Draw scatterplot of Pareto-front approximation

Description

The function expects a data.frame or a matrix. By default the first 2 or 3 columns/rows are assumed
to contain the elements of the approximation sets. Depending on the number of numeric columns
(in case of a data.frame) or the number of rows (in case of a matrix) the function internally calls
plotScatter2d or plotScatter3d.

Usage

plotFront(x, obj.names = NULL, minimize = TRUE, ...)

Arguments

x [matrix | data.frame]
Object which contains the approximations sets.

obj.names [character]
Optional objectives names. Default is c("f1", "f2").

minimize [logical]
Logical vector with ith entry TRUE if the ith objective shall be minimized. If
a single logical is passed, it is assumed to be valid for each objective. If the
matrix is of type ecr_fitness_matrix (this is the case if it is produced by
one of ecr2’s utility functions, e.g. evaluateFitness), the appended minimize
attribute is the default.

... [any]
Not used at the moment.

Value

[ggplot] ggplot object.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), normalize(), plotDistribution(), plotScatter2d(), plotScatter3d(),
toLatex()

60 plotHeatmap

plotHeatmap Plot heatmap.

Description

Given a matrix or list of matrizes x this function visualizes each matrix with a heatmap.

Usage

plotHeatmap(x, value.name = "Value", show.values = FALSE)

Arguments

x [matrix | list[matrix]]
Either a matrix or a list of matrizes.

value.name [character(1)]
Name for the values represented by the matrix. Internally, the matrix is trans-
formed into a data.frame via melt in order to obtain a format which may be
processed by ggplot easily. Default is “Value”.

show.values [logical(1L)]
Should the values be printed within the heatmap cells? Default is FALSE.

Value

[ggplot] ggplot object.

Examples

simulate two (correlation) matrizes
x = matrix(runif(100), ncol = 10)
y = matrix(runif(100), ncol = 10)
Not run:
pl = plotHeatmap(x)
pl = plotHeatmap(list(x, y), value.name = "Correlation")
pl = plotHeatmap(list(MatrixX = x, MatrixY = y), value.name = "Correlation")

End(Not run)

plotScatter2d 61

plotScatter2d Visualize bi-objective Pareto-front approximations.

Description

Given a data frame with the results of (multiple) runs of (multiple) different multi-objective op-
timization algorithms on (multiple) problem instances the function generates ggplot plots of the
obtained Pareto-front approximations.

Usage

plotScatter2d(
df,
obj.cols = c("f1", "f2"),
shape = "algorithm",
colour = NULL,
highlight.algos = NULL,
offset.highlighted = 0,
title = NULL,
subtitle = NULL,
facet.type = "wrap",
facet.args = list()

)

Arguments

df [data.frame]
Data.frame with columns at least obj.cols, “prob” and “algorithm”.

obj.cols [character(>= 2)]
Column names of the objective functions. Default is c("f1", "f2").

shape [character(1)]
Name of column which shall be used to define shape of points. Default is “al-
gorithm”.

colour [character(1)]
Name of column which shall be used to define colour of points. Default is NULL,
i.e., coloring is deactivated.

highlight.algos

[character(1)]
Name of algorithm to highlight exclusively. Useful to highlight, e.g., the true
Pareto-optimal front (if known) or some reference set. Default is NULL, i.e.,
unknown.

offset.highlighted

[numeric(1)]
Numeric offset used to shift set (see highlight.algos) which should be high-
lighted. Even though this produces objective vectors it may be used to make
visible reference sets which otherwise would be hidden by overlap of multiple
other approximation sets.

62 plotScatter2d

title [character(1)]
Plot title.

subtitle [character(1)]
Plot subtitle.

facet.type [character(1)]
Which faceting method to use? Pass “wrap” for facet_wrap or “grid” for
facet_grid. Default is “wrap”.

facet.args [list]
Named list of arguments passed down to facet_wrap or facet_grid respec-
tively (depends on facet.type). E.g., nrow to change layout. Default is the
empty list. In this case data is grouped by problem.

Value

[ggplot] A ggplot object.

Note

At the moment only approximations of bi-objective functions are supported.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), normalize(), plotDistribution(), plotFront(), plotScatter3d(),
toLatex()

Examples

Not run:
load examplary data
data(mcMST)
print(head(mcMST))

no customization; use the defaults
pl = plotFronts(mcMST)

algo PRIM is obtained by weighted sum scalarization
Since the front is (mainly) convex we highlight these solutions
pl = plotFronts(mcMST, highlight.algos = "PRIM")

customize layout
pl = plotFronts(mcMST, title = "Pareto-approximations",

subtitle = "based on different mcMST algorithms.", facet.args = list(nrow = 2))

End(Not run)

plotScatter3d 63

plotScatter3d Visualize three-objective Pareto-front approximations.

Description

Given a data frame with the results of (multiple) runs of (multiple) different three-objective opti-
mization algorithms on (multiple) problem instances the function generates 3D scatterplots of the
obtained Pareto-front approximations.

Usage

plotScatter3d(
df,
obj.cols = c("f1", "f2", "f3"),
max.in.row = 4L,
package = "scatterplot3d",
...

)

Arguments

df [data.frame]
Data.frame with columns at least obj.cols, “prob” and “algorithm”.

obj.cols [character(>= 3)]
Column names of the objective functions. Default is c("f1", "f2", "f3").

max.in.row [integer(1)]
Maximum number of plots to be displayed side by side in a row. Default is 4.

package [character(1L)]
Which package to use for 3d scatterplot generation? Possible choices are “scat-
terplot3d”, “plot3D”, “plot3Drgl” or “plotly”. Default is “scatterplot3d”.

... [any]
Further arguments passed down to scatterplot function.

Value

Nothing

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), normalize(), plotDistribution(), plotFront(), plotScatter2d(),
toLatex()

64 recCrossover

plotStatistics Generate line plot of logged statistics.

Description

Expects a data.frame of logged statistics, e.g., extracted from a logger object by calling getStatistics,
and generates a basic line plot. The plot is generated with the ggplot2 package and the ggplot object
is returned.

Usage

plotStatistics(x, drop.stats = character(0L))

Arguments

x [ecr_statistics | ecr_logger]
Logger object or statistics data frame from logger object.

drop.stats [character]
Names of logged statistics to be dropped. Default is the empty character, i.e.,
not to drop any stats.

recCrossover One-point crossover recombinator.

Description

The one-point crossover recombinator is defined for float and binary representations. Given two
real-valued/binary vectors of length n, the selector samples a random position i between 1 and n-1.
In the next step it creates two children. The first part of the first child contains of the subvector from
position 1 to position i of the first parent, the second part from position i+1 to n is taken from the
second parent. The second child is build analogously. If the parents are list of real-valued/binary
vectors, the procedure described above is applied to each element of the list.

Usage

recCrossover(inds)

Arguments

inds [list]
Parents, i.e., list of exactly two numeric or binary vectors of equal length.

Value

[list]

recIntermediate 65

See Also

Other recombinators: recIntermediate(), recOX(), recPMX(), recSBX(), recUnifCrossover()

recIntermediate Indermediate recombinator.

Description

Intermediate recombination computes the component-wise mean value of the k given parents. It is
applicable only for float representation.

Usage

recIntermediate(inds)

Arguments

inds [list]
Parents, i.e., list of exactly two numeric vectors of equal length.

Value

[numeric] Single offspring.

See Also

Other recombinators: recCrossover(), recOX(), recPMX(), recSBX(), recUnifCrossover()

recOX Ordered-Crossover (OX) recombinator.

Description

This recombination operator is specifically designed for permutations. The operators chooses two
cut-points at random and generates two offspring as follows: a) copy the subsequence of one parent
and b) remove the copied node indizes from the entire sequence of the second parent from the
sescond cut point and b) fill the remaining gaps with this trimmed sequence.

Usage

recOX(inds)

Arguments

inds [list]
Parents, i.e., list of exactly two permutations (vectors of integer values) of equal
length.

66 recSBX

Value

[list]

See Also

Other recombinators: recCrossover(), recIntermediate(), recPMX(), recSBX(), recUnifCrossover()

recPMX Partially-Mapped-Crossover (PMX) recombinator.

Description

This recombination operator is specifically designed for permutations. The operators chooses two
cut-points at random and generates two offspring as follows: a) copy the subsequence of one parent
and b) fill the remaining positions while preserving the order and position of as many genes as
possible.

Usage

recPMX(inds)

Arguments

inds [numeric]
Parents, i.e., list of exactly two permutations of equal length.

Value

[ecr_recombinator]

See Also

Other recombinators: recCrossover(), recIntermediate(), recOX(), recSBX(), recUnifCrossover()

recSBX Simulated Binary Crossover (SBX) recombinator.

Description

The Simulated Binary Crossover was first proposed by [1]. It i suited for float representation only
and creates two offspring. Given parents p1, p2 the offspring are generated as c1/2 = x̄± 1

2β(p2−p1)

where x̄ = 1
2 (p1 + p2), p2 > p1. This way c̄ = x̄ is assured.

Usage

recSBX(inds, eta = 5, p = 1, lower, upper)

recUnifCrossover 67

Arguments

inds [numeric]
Parents, i.e., list of exactly two numeric vectors of equal length.

eta [numeric(1)]
Parameter eta, i.e., the distance parameters of the crossover distribution.

p [numeric(1)]
Crossover probability for each gene. Default is 1.0.

lower [numeric]
Vector of minimal values for each parameter of the decision space.

upper [numeric]
Vector of maximal values for each parameter of the decision space.

Value

[ecr_recombinator]

Note

This is the default recombination operator used in the NSGA-II EMOA (see nsga2).

References

[1] Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for continuous search space.
Complex Systems 9(2), 115-148.

See Also

Other recombinators: recCrossover(), recIntermediate(), recOX(), recPMX(), recUnifCrossover()

recUnifCrossover Uniform crossover recombinator.

Description

Produces two child individuals. The i-th gene is from parent1 with probability p and from parent2
with probability 1-p.

Usage

recUnifCrossover(inds, p = 0.5)

Arguments

inds [list]
Parents, i.e., list of exactly two numeric or binary vectors of equal length.

p [numeric(1)]
Probability to select gene from parent1.

68 registerECROperator

Value

[list]

See Also

Other recombinators: recCrossover(), recIntermediate(), recOX(), recPMX(), recSBX()

reduceToSingleDataFrame

Combine multiple data frames into a single data.frame.

Description

Combine multiple data frames into a single data.frame.

Usage

reduceToSingleDataFrame(res = list(), what = NULL, group.col.name)

Arguments

res [list]
List of data frames or other lists which contain a data frame as one of the com-
ponents which is selected by what. If res is a named list those names are used
to fill the group column. Otherwise the names are 1 to length(res) by default.

what [character(1)]
Which component of each list element in res to choose. Set this to NULL, if res
is not complex, i.e., is not a list of lists.

group.col.name [character(1)]
Name for the grouping column.

registerECROperator Register operators to control object.

Description

In ecr the control object stores information on the fitness function and serves as a storage for evo-
lutionary components used by your evolutionary algorithm. This function handles the registration
process.

Usage

registerECROperator(control, slot, fun, ...)

replace 69

Arguments

control [ecr_control]
Control object.

slot [character(1)]
Name of the field in the control object where to store the operator.

fun [function]
Actual operator. In order to use the various helper functions of ecr one needs
to stick to a simple convention: The first argument of function should be the
individual to mutate, a list of individuals for recombination or a matrix of fitness
values for recombination. If one does not want to use the corresponding helpers,
e.g., mutate, the signature of the function does not matter. However, in this case
you are responsible to pass arguments correctly.

... [any]
Further arguments for fun. These arguments are stored in the control object and
passed on to fun.

Value

[ecr_control]

replace (mu + lambda) selection

Description

Takes a population of mu individuals and another set of lambda offspring individuals and selects
mu individuals out of the union set according to the survival selection strategy stored in the control
object.

Usage

replaceMuPlusLambda(
control,
population,
offspring,
fitness = NULL,
fitness.offspring = NULL

)

replaceMuCommaLambda(
control,
population,
offspring,
fitness = NULL,
fitness.offspring = NULL,
n.elite = base::max(ceiling(length(population) * 0.1), 1L)

)

70 selDomHV

Arguments

control [ecr_control]
Control object.

population [list]
Current set of individuals.

offspring [list]
Another set of individuals.

fitness [matrix]
Matrix of fitness values for the individuals from population. This is only op-
tional in the case that each individual in population has an attribute “fitness”.

fitness.offspring

[matrix]
Matrix of fitness values for the individuals from offspring. This is only op-
tional in the case that each individual in offspring has an attribute “fitness”.

n.elite [integer(1)]
Number of fittest individuals of the current generation that shall be copied to the
next generation without changing. Keep in mind, that the algorithm does not
care about this option if the survival.strategy is set to ’plus’. Default is 0.

Value

[list] List with selected population and corresponding fitness matrix.

selDomHV Dominated Hypervolume selector.

Description

Performs non-dominated sorting and drops the individual from the last front with minimal hypervol-
ume contribution. This selector is the basis of the S-Metric Selection Evolutionary Multi-Objective
Algorithm, termed SMS-EMOA (see smsemoa).

Usage

selDomHV(fitness, n.select, ref.point)

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

ref.point [numeric]
Reference point for hypervolume computation.

selDomNumberPlusHV 71

Value

[integer] Vector of survivor indizes.

Note

Note that the current implementation expects n.select = ncol(fitness) - 1 and the selection
process quits with an error message if n.select is greater than 1.

See Also

Other selectors: selDomNumberPlusHV(), selGreedy(), selNondom(), selRanking(), selRoulette(),
selSimple(), selTournament()

selDomNumberPlusHV Modified dominated Hypervolume selector.

Description

Alternative SMS-EMOA survival selection as proposed in Algorithm 3 of [1]. Performs non-
dominated sorting first. If the number of non-domination levels is at least two the algorithm drops
the individual with the highest number of dominating points (ties are broken at random) from the last
layer. If there is just one non-domination layer, i.e., all points are non-domianted the method drops
the individual with minimal hypervolume contribution. This selector is the basis of the S-Metric
Selection Evolutionary Multi-Objective Algorithm, termed SMS-EMOA (see smsemoa).

Usage

selDomNumberPlusHV(fitness, n.select, ref.point)

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

ref.point [numeric]
Reference point for hypervolume computation.

Value

[integer] Vector of survivor indizes.

Note

Note that the current implementation expects n.select = ncol(fitness) - 1 and the selection
process quits with an error message if n.select is greater than 1.

72 select

References

[1] Beume, Nicola, Boris Naujoks and M. Emmerich. SMS-EMOA: Multiobjective selection based
on dominated hypervolume.” European Journal of Operational Research. 181 (2007): 1653-1669.

See Also

Other selectors: selDomHV(), selGreedy(), selNondom(), selRanking(), selRoulette(), selSimple(),
selTournament()

select Select individuals.

Description

This utility functions expect a control object, a matrix of fitness values - each column containing
the fitness value(s) of one individual - and the number of individuals to select. The corresponding
selector, i.e., mating selector for selectForMating or survival selector for selectForSurvival is
than called internally and a vector of indizes of selected individuals is returned.

Usage

selectForMating(control, fitness, n.select)

selectForSurvival(control, fitness, n.select)

Arguments

control [ecr_control]
Control object.

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of individuals to select.

Details

Both functions check the optimization directions stored in the task inside the control object, i.e.,
whether to minimize or maximize each objective, and transparently prepare/transform the fitness
matrix for the selector.

Value

[integer] Integer vector with the indizes of selected individuals.

selGreedy 73

selGreedy Simple selector.

Description

Sorts the individuals according to their fitness value in increasing order and selects the best ones.

Usage

selGreedy(fitness, n.select)

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

Value

[integer] Vector of survivor indizes.

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selNondom(), selRanking(), selRoulette(),
selSimple(), selTournament()

selNondom Non-dominated sorting selector.

Description

Applies non-dominated sorting of the objective vectors and subsequent crowding distance compu-
tation to select a subset of individuals. This is the selector used by the famous NSGA-II EMOA
(see nsga2).

Usage

selNondom(fitness, n.select)

74 selRanking

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

Value

[setOfIndividuals]

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selGreedy(), selRanking(), selRoulette(),
selSimple(), selTournament()

selRanking Rank Selection Operator

Description

Rank-based selection preserves a constant selection pressure by sorting the population on the basis
of fitness, and then allocating selection probabilities to individuals according to their rank, rather
than according to their actual fitness values.

Usage

selRanking(fitness, n.select, s = 1.5, scheme = "linear")

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

s [numeric(1)]
Selection pressure for linear ranking scheme with value range [0, 1]. Ignored if
scheme is set to “exponential”. Default is 1.5.

scheme [character(1)]
Mapping from rank number to selection probability, either “linear” or “expo-
nential”.

Value

[setOfIndividuals]

selRoulette 75

References

Eiben, A. E., & Smith, J. E. (2007). Introduction to evolutionary computing. Berlin: Springer.

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selGreedy(), selNondom(), selRoulette(),
selSimple(), selTournament()

selRoulette Roulette-wheel / fitness-proportional selector.

Description

The chance of an individual to get selected is proportional to its fitness, i.e., better individuals get
a higher chance to take part in the reproduction process. Low-fitness individuals however, have a
positive fitness as well.

Usage

selRoulette(fitness, n.select, offset = 0.1)

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

offset [numeric(1)]
In case of negative fitness values all values are shifted towards positive values
by adding the negative of the minimal fitness value. However, in this case the
minimal fitness value after the shifting process is zero. The offset is a positive
numeric value which is added additionally to each shifted fitness value. This
way even the individual with the smallest fitness value has a positive porbability
to be selected. Default is 0.1.

Details

Fitness proportional selection can be naturally applied to single objective maximization problems.
However, negative fitness values can are problematic. The Roulette-Wheel selector thus works with
the following heuristic: if negative values occur, the negative of the smallest fitness value is added
to each fitness value. In this case to avoid the smallest shifted fitness value to be zero and thus have a
zero probability of being selected an additional positive constant offset is added (see parameters).

Value

[setOfIndividuals]

76 selTournament

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selGreedy(), selNondom(), selRanking(),
selSimple(), selTournament()

selSimple Simple (naive) selector.

Description

Just for testing. Actually does not really select, but instead returns a random sample of ncol(fitness)
indizes.

Usage

selSimple(fitness, n.select)

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

Value

[setOfIndividuals]

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selGreedy(), selNondom(), selRanking(),
selRoulette(), selTournament()

selTournament k-Tournament selector.

Description

k individuals from the population are chosen randomly and the best one is selected to be included
into the mating pool. This process is repeated until the desired number of individuals for the mating
pool is reached.

Usage

selTournament(fitness, n.select, k = 3L)

setDominates 77

Arguments

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) of one indi-
vidual).

n.select [integer(1)]
Number of elements to select.

k [integer(1)]
Number of individuals to participate in each tournament. Default is 2L.

Value

[integer] Vector of survivor indizes.

See Also

Other selectors: selDomHV(), selDomNumberPlusHV(), selGreedy(), selNondom(), selRanking(),
selRoulette(), selSimple()

setDominates Check if one set is better than another.

Description

The function checks, whether each points of the second set of points is dominated by at least one
point from the first set.

Usage

setDominates(x, y)

Arguments

x [matrix]
First set of points.

y [matrix]
Second set of points.

Value

[logical(1)]

78 setup

setup Set up parameters for evolutionary operator.

Description

This function builds a simple wrapper around an evolutionary operator, i.e., mutator, recombina-
tor or selector and defines its parameters. The result is a function that does not longer depend
on the parameters. E.g., fun = setup(mutBitflip, p = 0.3) initializes a bitflip mutator with mu-
tation probability 0.3. Thus, the following calls have the same behaviour: fun(c(1, 0, 0)) and
mutBitflip(fun(c(1, 0, 0), p = 0.3). Basically, this type of preinitialization is only neccessary
if operators with additional parameters shall be initialized in order to use the black-box ecr.

Usage

setup(operator, ...)

Arguments

operator [ecr_operator]
Evolutionary operator.

... [any]
Furhter parameters for operator.

Value

[function] Wrapper evolutionary operator with parameters x and

Examples

initialize bitflip mutator with p = 0.3
bf = setup(mutBitflip, p = 0.3)
sample binary string
x = sample(c(0, 1), 100, replace = TRUE)

set.seed(1)
apply preinitialized function
print(bf(x))

set.seed(1)
apply raw function
print(mutBitflip(x, p = 0.3))

overwrite preinitialized values with mutate
ctrl = initECRControl(fitness.fun = function(x) sum(x), n.objectives = 1L)
here we define a mutation probability of 0.3
ctrl = registerECROperator(ctrl, "mutate", setup(mutBitflip, p = 0.3))
here we overwrite with 1, i.e., each bit is flipped
print(x)
print(mutate(ctrl, list(x), p.mut = 1, p = 1)[[1]])

setupECRDefaultMonitor 79

setupECRDefaultMonitor

Default monitor.

Description

Default monitor object that outputs messages to the console based on a default logger (see initLogger).

Usage

setupECRDefaultMonitor(step = 10L)

Arguments

step [integer(1)]
Number of steps of the EA between monitoring. Default is 10.

Value

[ecr_monitor]

smsemoa Implementation of the SMS-EMOA by Emmerich et al.

Description

Pure R implementation of the SMS-EMOA. This algorithm belongs to the group of indicator based
multi-objective evolutionary algorithms. In each generation, the SMS-EMOA selects two parents
uniformly at, applies recombination and mutation and finally selects the best subset of individuals
among all subsets by maximizing the Hypervolume indicator.

Usage

smsemoa(
fitness.fun,
n.objectives = NULL,
n.dim = NULL,
minimize = NULL,
lower = NULL,
upper = NULL,
mu = 100L,
ref.point = NULL,
mutator = setup(mutPolynomial, eta = 25, p = 0.2, lower = lower, upper = upper),
recombinator = setup(recSBX, eta = 15, p = 0.7, lower = lower, upper = upper),
terminators = list(stopOnIters(100L)),
...

)

80 smsemoa

Arguments

fitness.fun [function]
The fitness function.

n.objectives [integer(1)]
Number of objectives of obj.fun. Optional if obj.fun is a benchmark function
from package smoof.

n.dim [integer(1)]
Dimension of the decision space.

minimize [logical(n.objectives)]
Logical vector with ith entry TRUE if the ith objective of fitness.fun shall
be minimized. If a single logical is passed, it is assumed to be valid for each
objective.

lower [numeric]
Vector of minimal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

upper [numeric]
Vector of maximal values for each parameter of the decision space in case of
float or permutation encoding. Optional if obj.fun is a benchmark function
from package smoof.

mu [integer(1)]
Number of individuals in the population. Default is 100.

ref.point [numeric]
Reference point for the hypervolume computation. Default is (11, ..., 11)’ with
the corresponding dimension.

mutator [ecr_mutator]
Mutation operator of type ecr_mutator.

recombinator [ecr_recombinator]
Recombination operator of type ecr_recombinator.

terminators [list]
List of stopping conditions of type “ecr_terminator”. Default is to stop after 100
iterations.

... [any]
Further arguments passed down to fitness function.

Value

[ecr_multi_objective_result]

Note

This helper function hides the regular ecr interface and offers a more R like interface of this state of
the art EMOA.

sortByObjective 81

References

Beume, N., Naujoks, B., Emmerich, M., SMS-EMOA: Multiobjective selection based on dominated
hypervolume, European Journal of Operational Research, Volume 181, Issue 3, 16 September 2007,
Pages 1653-1669.

sortByObjective Sort Pareto-front approximation by objective.

Description

Sort Pareto-front approximation by objective.

Usage

sortByObjective(x, obj = 1L, ...)

S3 method for class 'data.frame'
sortByObjective(x, obj = 1L, ...)

S3 method for class 'matrix'
sortByObjective(x, obj = 1L, ...)

S3 method for class 'ecr_multi_objective_result'
sortByObjective(x, obj = 1L, ...)

S3 method for class 'list'
sortByObjective(x, obj = 1L, ...)

Arguments

x [object]
Object of type data frame (objectives column-wise), matrix (objectives row-
wise), ecr_multi_objective_result or list (with components “pareto.front”)
and “pareto.set”.

obj [integer(1) | character(1)]
Either the row/column number to sort by or the column name, e.g., for data
frames.

... [any]
Further arguments passed down to order.

Value

Modified object.

82 toGG

stoppingConditions Stopping conditions

Description

Stop the EA after a fixed number of fitness function evaluations, after a predefined number of
generations/iterations, a given cutoff time or if the known optimal function value is approximated
(only for single-objective optimization).

Usage

stopOnEvals(max.evals = NULL)

stopOnIters(max.iter = NULL)

stopOnOptY(opt.y, eps)

stopOnMaxTime(max.time = NULL)

Arguments

max.evals [integer(1)]
Maximal number of function evaluations. Default is Inf.

max.iter [integer(1)]
Maximal number of iterations/generations. Default is Inf.

opt.y [numeric(1)]
Optimal scalar fitness function value.

eps [numeric(1)]
Stop if absolute deviation from opt.y is lower than eps.

max.time [integer(1)]
Time limit in seconds. Default is Inf.

Value

[ecr_terminator]

toGG Transform to long format.

Description

Transform the data.frame of logged statistics from wide to ggplot2-friendly long format.

toLatex 83

Usage

toGG(x, drop.stats = character(0L))

Arguments

x [ecr_statistics | ecr_logger]
Logger object or statistics data frame from logger object.

drop.stats [character]
Names of logged statistics to be dropped. Default is the empty character, i.e.,
not to drop any stats.

Value

[data.frame]

toLatex Export results of statistical tests to LaTeX table(s).

Description

Returns high-quality LaTeX-tables of the test results of statistical tests performed with function
test on per-instance basis. I.e., a table is returned for each instances combining the results of
different indicators.

Usage

toLatex(
stats,
stat.cols = NULL,
probs = NULL,
type = "by.instance",
cell.formatter = NULL

)

S3 method for class 'list'
toLatex(
stats,
stat.cols = NULL,
probs = NULL,
type = "by.instance",
cell.formatter = NULL

)

S3 method for class 'data.frame'
toLatex(
stats,

84 toParetoDf

stat.cols = NULL,
probs = NULL,
type = "by.instance",
cell.formatter = NULL

)

Arguments

stats [list]
Data frame (return value of computeIndicators) or named list of list as re-
turned by test.

stat.cols [character]
Names of the indicators to consider. Defaults to all indicators available in stats.

probs [character]
Filtering: vector of problem instances. This way one can restrict the size of the
table(s). Defaults to all problems available in stats. Ignored if stats is a data
frame.

type [character(1)]
Type of tables. At the moment only option “by.instance” is available. I.e., a
separate LaTeX-table is generated for each instance specified via probs. Ignored
if stats is a data frame.

cell.formatter [function(cell, ...)]
Function which is used to format table cells. This function is applied to each ta-
ble cell and may be used to customize the output. Default is niceCellFormater.
Ignored if stats is a data frame.

Value

[list] Named list of strings (LaTeX tables). Names correspond to the selected problem instances
in probs.

See Also

Other EMOA performance assessment tools: approximateNadirPoint(), approximateRefPoints(),
approximateRefSets(), computeDominanceRanking(), emoaIndEps(), makeEMOAIndicator(),
niceCellFormater(), normalize(), plotDistribution(), plotFront(), plotScatter2d(),
plotScatter3d()

toParetoDf Convert matrix to Pareto front data frame.

Description

Inside ecr EMOA algorithms the fitness is maintained in an (o, n) matrix where o is the number of
objectives and n is the number of individuals. This function basically transposes such a matrix and
converts it into a data frame.

transformFitness 85

Usage

toParetoDf(x, filter.dups = FALSE)

Arguments

x [matrix]
Matrix.

filter.dups [logical(1)]
Shall duplicates be removed? Default is FALSE.

Value

[data.frame]

transformFitness Fitness transformation / scaling.

Description

Some selectors support maximization only, e.g., roulette wheel selector, or minimization (most
others). This function computes a factor from -1, 1 for each objective to match supported selector
optimization directions and the actual objectives of the task.

Usage

transformFitness(fitness, task, selector)

Arguments

fitness [matrix] Matrix of fitness values with the fitness vector of individual i in the i-th
column.

task [ecr_optimization_task] Optimization task.

selector [ecr_selector] Selector object.

Value

[matrix] Transformed / scaled fitness matrix.

86 updateParetoArchive

updateLogger Update the log.

Description

This function modifies the log in-place, i.e., without making copies.

Usage

updateLogger(log, population, fitness = NULL, n.evals, extras = NULL, ...)

Arguments

log [ecr_logger]
The log generated by initLogger.

population [list]
List of individuals.

fitness [matrix]
Optional matrix of fitness values (each column contains the fitness value(s) for
one individual) of population. If no matrix is passed and the log shall store
information of the fitness, each individual needs to have an attribute fitness.

n.evals [integer(1)]
Number of fitness function evaluations performed in the last generation.

extras [list]
Optional named list of additional scalar values to log. See log.extras argument
of initLogger for details.

... [any]
Furhter arguments. Not used at the moment.

See Also

Other logging: getPopulationFitness(), getPopulations(), getStatistics(), initLogger()

updateParetoArchive Update Pareto Archive.

Description

This function updates a Pareto archive, i.e., an archive of non-dominated points. It expects the
archive, a set of individuals, a matrix of fitness values (each column corresponds to the fitness
vector of one individual) and updates the archive “in-place”. If the archive has unlimited capacity
all non-dominated points of the union of archive and passed individuals are stored. Otherwise, i.e.,
in case the archive is limited in capacity (argument max.size of initParetoArchive was set to an
integer value greater zero), the trunc.fun function passed to initParetoArchive is applied to all
non-dominated points to determine which points should be dropped.

which.dominated 87

Usage

updateParetoArchive(archive, inds, fitness, ...)

Arguments

archive [ecr_pareto_archive]
The archive generated by initParetoArchive.

inds [list]
List of individuals.

fitness [matrix]
Matrix of fitness values (each column contains the fitness value(s) for one indi-
vidual) of inds.

... [any]
Furhter arguments passed down to trunc.fun (set via initParetoArchive).

See Also

Other ParetoArchive: getIndividuals(), getSize(), initParetoArchive()

which.dominated Determine which points of a set are (non)dominated.

Description

Given a matrix with one point per column which.dominated returns the column numbers of the
dominated points and which.nondominated the column numbers of the nondominated points.
Function isMaximallyDominated returns a logical vector with TRUE for each point which is lo-
cated on the last non-domination level.

Usage

which.dominated(x)

which.nondominated(x)

isMaximallyDominated(x)

Arguments

x [matrix]
Numeric (n x d) matrix where n is the number of points and d is the number of
objectives.

Value

[integer]

88 wrapChildren

Examples

data(mtcars)
assume we want to maximize horsepower and minimize gas consumption
cars = mtcars[, c("mpg", "hp")]
cars$hp = -cars$hp
idxs = which.nondominated(as.matrix(cars))
print(mtcars[idxs,])

wrapChildren Wrap the individuals constructed by a recombination operator.

Description

Should be used if the recombinator returns multiple children.

Usage

wrapChildren(...)

Arguments

... [any]
Individuals.

Value

[list] List of individuals.

Index

∗ EMOA performance assessment tools
approximateNadirPoint, 5
approximateRefPoints, 6
approximateRefSets, 6
computeDominanceRanking, 12
emoaIndEps, 23
makeEMOAIndicator, 42
niceCellFormater, 54
normalize, 55
plotDistribution, 57
plotFront, 59
plotScatter2d, 61
plotScatter3d, 63
toLatex, 83

∗ ParetoArchive
getIndividuals, 32
getSize, 34
initParetoArchive, 39
updateParetoArchive, 86

∗ datasets
mcMST, 47

∗ generators
generators, 30

∗ logging
getPopulationFitness, 33
getPopulations, 34
getStatistics, 35
initLogger, 37
updateLogger, 86

∗ mutators
mutBitflip, 48
mutGauss, 49
mutInsertion, 50
mutInversion, 50
mutJump, 51
mutPolynomial, 51
mutScramble, 52
mutSwap, 53
mutUniform, 53

∗ optimize
asemoa, 7
dominated, 17
dominates, 18
ecr, 19
nsga2, 56
smsemoa, 79
which.dominated, 87

∗ recombinators
recCrossover, 64
recIntermediate, 65
recOX, 65
recPMX, 66
recSBX, 66
recUnifCrossover, 67

∗ selectors
selDomHV, 70
selDomNumberPlusHV, 71
selGreedy, 73
selNondom, 73
selRanking, 74
selRoulette, 75
selSimple, 76
selTournament, 76

∗ stopping conditions
stoppingConditions, 82

%dominates% (dominates), 18
%isDominatedBy% (dominates), 18

addAllGroup (addUnionGroup), 4
addUnionGroup, 4
approximateIdealPoint

(approximateNadirPoint), 5
approximateNadirPoint, 5, 6, 7, 13, 26, 43,

55, 56, 58, 59, 62, 63, 84
approximateRefPoints, 5, 6, 7, 13, 26, 43,

55, 56, 58, 59, 62, 63, 84
approximateRefSets, 5, 6, 6, 13, 26, 43, 55,

56, 58, 59, 62, 63, 84
asemoa, 7

89

90 INDEX

categorize, 9
computeAverageHausdorffDistance, 10
computeCrowdingDistance, 11
computeDistanceFromPointToSetOfPoints,

11
computeDominanceRanking, 5–7, 12, 26, 43,

55, 56, 58, 59, 62, 63, 84
computeGenerationalDistance, 13
computeHV, 14
computeHVContr (computeHV), 14
computeIndicators, 15, 43, 57, 84
computeInvertedGenerationalDistance,

16

dominated, 17
dominates, 18
doNondominatedSorting, 18

ecr, 19, 22, 37, 78
ecr_multi_objective_result, 28, 81
ecr_parallelization, 22
ecr_result, 22, 22
emoaIndC (emoaIndEps), 23
emoaIndDelta (emoaIndEps), 23
emoaIndDeltap (emoaIndEps), 23
emoaIndEps, 5–7, 13, 15, 23, 43, 55, 56, 58,

59, 62, 63, 84
emoaIndGD (emoaIndEps), 23
emoaIndHV (emoaIndEps), 23
emoaIndIGD (emoaIndEps), 23
emoaIndM1 (emoaIndEps), 23
emoaIndMD (emoaIndEps), 23
emoaIndONVG (emoaIndEps), 23
emoaIndR1 (emoaIndEps), 23
emoaIndR2 (emoaIndEps), 23
emoaIndR3 (emoaIndEps), 23
emoaIndSP (emoaIndEps), 23
evaluateFitness, 26, 59
explode, 27

facet_grid, 58, 62
facet_wrap, 58, 62
filterDuplicated, 28

gen (generators), 30
genBin, 40
genBin (generators), 30
generateOffspring, 29
generatesMultipleChildren, 30

generators, 30
genPerm (generators), 30
genReal (generators), 30
getFront, 31
getIndividuals, 32, 35, 40, 87
getNumberOfChildren, 32
getNumberOfParentsNeededForMating, 33
getPopulationFitness, 33, 34, 35, 38, 86
getPopulations, 33, 34, 35, 38, 86
getSize, 32, 34, 40, 87
getStatistics, 33, 34, 35, 38, 64, 86
getSupportedRepresentations, 36
ggplot, 58, 60–62

implode (explode), 27
initECRControl, 36
initLogger, 21, 33–35, 37, 47, 86
initParetoArchive, 32, 35, 39, 86, 87
initPopulation, 40
is.supported, 41
isDominated (dominates), 18
isEcrOperator, 41
isMaximallyDominated (which.dominated),

87

makeECRMonitor, 42
makeEMOAIndicator, 5–7, 13, 26, 42, 55, 56,

58, 59, 62, 63, 84
makeMutator, 43, 44
makeOperator, 44
makeOptimizationTask, 44
makeRecombinator, 45
makeSelector, 44, 46
makeTerminator, 47
mcMST, 47
melt, 60
mutate (generateOffspring), 29
mutBitflip, 48, 49–54
mutGauss, 48, 49, 50–54
mutInsertion, 48, 49, 50, 51–54
mutInversion, 48–50, 50, 51–54
mutJump, 48–51, 51, 52–54
mutPolynomial, 48–51, 51, 53, 54
mutScramble, 48–52, 52, 53, 54
mutSwap, 48–53, 53, 54
mutUniform, 48–53, 53

niceCellFormater, 5–7, 13, 26, 43, 54, 56,
58, 59, 62, 63, 84

INDEX 91

nondominated (dominated), 17
normalize, 5–7, 13, 26, 43, 55, 55, 58, 59, 62,

63, 84
nsga2, 19, 56, 67, 73

optim, 19
order, 81

parallelMap, 12, 15, 26
plotDistribution, 5–7, 13, 26, 43, 55, 56,

57, 59, 62, 63, 84
plotFront, 5–7, 13, 26, 43, 55, 56, 58, 59, 62,

63, 84
plotHeatmap, 60
plotScatter2d, 5–7, 13, 26, 43, 55, 56, 58,

59, 61, 63, 84
plotScatter3d, 5–7, 13, 26, 43, 55, 56, 58,

59, 62, 63, 84
plotStatistics, 64

recCrossover, 64, 65–68
recIntermediate, 65, 65, 66–68
recombinate (generateOffspring), 29
recOX, 65, 65, 66–68
recPMX, 65, 66, 66, 67, 68
recSBX, 65, 66, 66, 68
recUnifCrossover, 65–67, 67
reduceToSingleDataFrame, 68
registerECROperator, 68
replace, 69
replaceMuCommaLambda (replace), 69
replaceMuPlusLambda (replace), 69

selDomHV, 70, 72–77
selDomNumberPlusHV, 71, 71, 73–77
select, 72
selectForMating (select), 72
selectForSurvival (select), 72
selGreedy, 71, 72, 73, 74–77
selNondom, 71–73, 73, 75–77
selRanking, 71–74, 74, 76, 77
selRoulette, 71–75, 75, 76, 77
selSimple, 71–76, 76, 77
selTournament, 71–76, 76
setDominates, 77
setup, 78
setupECRDefaultMonitor, 79
smsemoa, 70, 71, 79
sortByObjective, 81

stopOnEvals (stoppingConditions), 82
stopOnIters (stoppingConditions), 82
stopOnMaxTime (stoppingConditions), 82
stopOnOptY (stoppingConditions), 82
stoppingConditions, 82

toGG, 82
toLatex, 5–7, 13, 26, 43, 54–56, 58, 59, 62,

63, 83
toParetoDf, 84
transformFitness, 85

updateLogger, 33–35, 38, 86
updateParetoArchive, 32, 35, 40, 86

vector, 37

which.dominated, 87
which.nondominated (which.dominated), 87
wrapChildren, 88

	addUnionGroup
	approximateNadirPoint
	approximateRefPoints
	approximateRefSets
	asemoa
	categorize
	computeAverageHausdorffDistance
	computeCrowdingDistance
	computeDistanceFromPointToSetOfPoints
	computeDominanceRanking
	computeGenerationalDistance
	computeHV
	computeIndicators
	computeInvertedGenerationalDistance
	dominated
	dominates
	doNondominatedSorting
	ecr
	ecr_parallelization
	ecr_result
	emoaIndEps
	evaluateFitness
	explode
	filterDuplicated
	generateOffspring
	generatesMultipleChildren
	generators
	getFront
	getIndividuals
	getNumberOfChildren
	getNumberOfParentsNeededForMating
	getPopulationFitness
	getPopulations
	getSize
	getStatistics
	getSupportedRepresentations
	initECRControl
	initLogger
	initParetoArchive
	initPopulation
	is.supported
	isEcrOperator
	makeECRMonitor
	makeEMOAIndicator
	makeMutator
	makeOperator
	makeOptimizationTask
	makeRecombinator
	makeSelector
	makeTerminator
	mcMST
	mutBitflip
	mutGauss
	mutInsertion
	mutInversion
	mutJump
	mutPolynomial
	mutScramble
	mutSwap
	mutUniform
	niceCellFormater
	normalize
	nsga2
	plotDistribution
	plotFront
	plotHeatmap
	plotScatter2d
	plotScatter3d
	plotStatistics
	recCrossover
	recIntermediate
	recOX
	recPMX
	recSBX
	recUnifCrossover
	reduceToSingleDataFrame
	registerECROperator
	replace
	selDomHV
	selDomNumberPlusHV
	select
	selGreedy
	selNondom
	selRanking
	selRoulette
	selSimple
	selTournament
	setDominates
	setup
	setupECRDefaultMonitor
	smsemoa
	sortByObjective
	stoppingConditions
	toGG
	toLatex
	toParetoDf
	transformFitness
	updateLogger
	updateParetoArchive
	which.dominated
	wrapChildren
	Index

